导航:首页 > 源码编译 > 数学建模算法与应用电子版

数学建模算法与应用电子版

发布时间:2023-07-12 05:28:33

1. 【数学建模算法】(16)排队论:常用的几种概率分布及产生

区间 内的 均匀分布 记做 。服从 分布的随机变量又称为随机数,它是产生其他随机变量的基础。如若 为 分布,则 服从 。

以 为期望, 为方差的 正态分布 记做 。正态分布的应用十分广泛。正态分布还可以作为二项分布一定条件下的近似。

指数分布 是单参数 的非对称分布,记做 ,概率密度函数为:

数学期望为 ,方差为 。指数分布是唯一具有无记忆性的连续型随机变量,既有 ,在排队论,可靠性分析中有广泛应用。

Gamma分布是双参数 的非对称分布,记做 ,期望是 。 时退化为指数分布。 个相互独立,同分布(参数 )的指数分布之和是Gamma分布 。Gamma分布可用于服务时间,零件寿命等。
Gamma分布又称为埃尔朗分布。

Weibull分布是双参数 的非对称分布,记做 。 时退化为指数分布。作为设备,零件的寿命分布在可靠性分析中有非常广泛的应用。

Beta分布是区间 内的双参数,非均匀分布,记做 。

伯努利分布是 处取值的概率分别是 和 的两点分布,记做 。用于基本的离散模型。

泊松分布与指数分布有密切的关系。当顾客平均到达率为常数 的到达间隔服从指数分布时,单位时间内到达的顾客数 服从泊松分布,即单位时间内到达 位顾客的概率为:

记做 。泊松分布在排队服务,产品检验,生物与医学统计,天文,物理等领域都有广泛应用。

在独立进行的每次试验中,某事件发生的概率为 ,则 次实验中该事件发生的次数 服从二项分布,即发生 次的概率为:

记做 。二项分布是 个独立的伯努利分布之和。它在产品检验,保险,生物和医学统计等领域有着广泛的应用。
当 很大时, 近似于正态分布 ;当 很大, 很小,且 约为常数 时, 近似于

2. 求分享下司守奎老师的数学建模算法与应用这本书的电子版,多谢多谢

pdf" wealth="0" />

3. Python数据分析在数学建模中的应用汇总(持续更新中!)

1、Numpy常用方法使用大全(超详细)

1、Series和DataFrame简单入门
2、Pandas操作CSV文件的读写
3、Pandas处理DataFrame,Series进行作图

1、Matplotlib绘图之属性设置
2、Matplotlib绘制误差条形图、饼图、等高线图、3D柱形图

1、层次分析法(AHP)——算数平均值法、几何平均值法、特征值法(Python实现,超详细注释)
2、Python实现TOPSIS分析法(优劣解距离法)
3、Python实现线性插值和三次样条插值
4、Python实现线性函数的拟合算法
5、Python实现统计描述以及计算皮尔逊相关系数
6、Python实现迪杰斯特拉算法和贝尔曼福特算法求解最短路径

4. 求助,关于司守奎的数学建模算法与程序

本书是是国防工业出版社出版的《数学建模算法与应用(第2班)》的配套书籍。本书给出了《数学建模算法与应用(第2版)》中全部习题的解答及程序设计,另外针对选修课的教学内容,又给出一些补充习题及解答。

本书的程序来自于教学实践,有许多经验心得体现在编程的技巧中。这些技巧不仅实用,也很有特色。书中提供了全部习题的程序,可以将这些程序直接作为工具箱来使用

5. 数学建模算法总结

无总结反省则无进步

写这篇文章,一是为了总结之前为了准备美赛而学的算法,而是将算法罗列并有几句话解释方便以后自己需要时来查找。

数学建模问题总共分为四类:

1. 分类问题 2. 优化问题 3. 评价问题 4. 预测问题

我所写的都是基于数学建模算法与应用这本书

一 优化问题

线性规划与非线性规划方法是最基本经典的:目标函数与约束函数的思想

现代优化算法:禁忌搜索;模拟退火;遗传算法;人工神经网络

模拟退火算法:

简介:材料统计力学的研究成果。统计力学表明材料中不同结构对应于粒子的不同能量水平。在高温条件下,粒子的能量较高,可以自由运动和重新排列。在低温条件下,粒子能量较低。如果从高温开始,非常缓慢地降温(此过程称为退火),粒子就可以在每个温度下达到热平衡。当系统完全被冷却时,最终形成处于低能状态的晶体。

思想可用于数学问题的解决 在寻找解的过程中,每一次以一种方法变换新解,再用退火过程的思想,以概率接受该状态(新解) 退火过程:概率转化,概率为自然底数的能量/KT次方

遗传算法: 遗传算法是一种基于自然选择原理和自然遗传机制的搜索算法。模拟自然界中的生命进化机制,在人工系统中实现特定目标的优化。

遗传算法的实质是通过群体搜索技术(?),根据适者生存的原则逐代进化,最终得到最优解或准最优解。

具体实现过程(P329~331)

* 编码

* 确定适应度函数(即目标函数)

* 确定进化参数:群体规模M,交叉概率Pc,变异概率Pm,进化终止条件

* 编码

* 确定初始种群,使用经典的改良圈算法

* 目标函数

* 交叉操作

* 变异操作

* 选择

改良的遗传算法

两点改进 :交叉操作变为了以“门当户对”原则配对,以混乱序列确定较差点位置 变异操作从交叉操作中分离出来

二 分类问题(以及一些多元分析方法)

* 支持向量机SVM

* 聚类分析

* 主成分分析

* 判别分析

* 典型相关分析

支持向量机SVM: 主要思想:找到一个超平面,使得它能够尽可能多地将两类数据点正确分开,同时使分开的两类数据点距离分类面最远

聚类分析(极其经典的一种算法): 对样本进行分类称为Q型聚类分析 对指标进行分类称为R型聚类分析

基础:样品相似度的度量——数量化,距离——如闵氏距离

主成分分析法: 其主要目的是希望用较少的变量去解释原来资料中的大部分变异,将掌握的许多相关性很高的变量转化成彼此相互独立或不相关的变量。通常是选出比原始变量个数少,能解释大部分资料中的变异的几个新变量,及主成分。实质是一种降维方法

判别分析: 是根据所研究的个体的观测指标来推断个体所属类型的一种统计方法。判别准则在某种意义下是最优的,如错判概率最小或错判损失最小。这一方法像是分类方法统称。 如距离判别,贝叶斯判别和FISHER判别

典型相关分析: 研究两组变量的相关关系 相对于计算全部相关系数,采用类似主成分的思想,分别找出两组变量的各自的某个线性组合,讨论线性组合之间的相关关系

三 评价与决策问题

评价方法分为两大类,区别在于确定权重上:一类是主观赋权:综合资讯评价定权;另一类为客观赋权:根据各指标相关关系或各指标值变异程度来确定权数

* 理想解法

* 模糊综合评判法

* 数据包络分析法

* 灰色关联分析法

* 主成分分析法(略)

* 秩和比综合评价法 理想解法

思想:与最优解(理想解)的距离作为评价样本的标准

模糊综合评判法 用于人事考核这类模糊性问题上。有多层次模糊综合评判法。

数据包络分析法 是评价具有多指标输入和多指标输出系统的较为有效的方法。是以相对效率为概念基础的。

灰色关联分析法 思想:计算所有待评价对象与理想对象的灰色加权关联度,与TOPSIS方法类似

主成分分析法(略)

秩和比综合评价法 样本秩的概念: 效益型指标从小到大排序的排名 成本型指标从大到小排序的排名 再计算秩和比,最后统计回归

四 预测问题

* 微分方程模型

* 灰色预测模型

* 马尔科夫预测

* 时间序列(略)

* 插值与拟合(略)

* 神经网络

微分方程模型 Lanchester战争预测模型。。

灰色预测模型 主要特点:使用的不是原始数据序列,而是生成的数据序列 优点:不需要很多数据·,能利用微分方程来充分挖掘系统的本质,精度高。能将无规律的原始数据进行生成得到规律性较强的生成序列。 缺点:只适用于中短期预测,只适合指数增长的预测

马尔科夫预测 某一系统未来时刻情况只与现在状态有关,与过去无关。

马尔科夫链

时齐性的马尔科夫链

时间序列(略)

插值与拟合(略)

神经网络(略)

6. 数学建模的建模资料

《建模协会为铁大学子准备的备战建模资料0401-0502》网络网盘免费资源下载

链接: https://pan..com/s/1y9fB2G-J_gW98MH9K26XOA

?pwd=bnhp 提取码: bnhp

建模协会为铁大学子准备的备战建模资料0401-0501|用前必读:数学建模协会承办竞赛参赛报名通知渠道.docx|建模协会为铁大学子准备的备战建模资料.rar

7. 数学建模算法与应用的内容简介

《数学建模算法与应用》主要内容简介:作者司守奎、孙玺菁根据多年数学建模竞赛辅导工作的经验编写《数学建模算法与应用》系统全面,各章节相对独立。《数学建模算法与应用》所选案例具有代表性,注重从不同侧面反映数学思想在实际问题中的灵活应用,既注重算法原理的通俗性,也注重算法应用的实现性,克服了很多读者看懂算法却解决不了实际问题的困难。《数学建模算法与应用》所有例题均配有madab或lingo源程序,程序设计简单精炼,思路清晰,注释详尽,灵活应用Matlab工具箱,有利于没有编程基础的读者快速入门。同时很多程序隐含了作者多年的编程经验和技巧,为有一定编程基础的读者深入学习Matlab、Lingo等编程软件提供了便捷之路。《数学建模算法与应用》既可以作为数学建模课程教材和辅导书,也可以作为相关科技工作者参考用书。

8. 【数学建模算法】(29)数据的统计描述和分析(上)

数理统计 研究的对象是受随机因素影响的数据,以下数理统计就简称统计,统计是以概率论为基础的一门应用学科。
数据样本少则几个,多则成千上万,人们希望能用少数几个包含其最多相关信息的数值来体现数据样本总体的规律。描述性统计就是搜集、整理、加工和分析统计数据,使之系统化、条理化,以显示出数据资料的趋势、特征和数量关系。它是统计推断的基础,实用性较强,在统计工作中经常使用。
面对一批数据如何进行描述与分析,需要掌握 参数估计 假设检验 这两个数理统计的最基本方法。
我们将用 Matlab 的统计工具箱(Statistics Toolbox)来实现数据的统计描述和分析。

一组数据(样本)往往是杂乱无章的,做出它的频数表和直方图,可以看作是对这组数据的一个初步整理和直观描述。
将数据的取值范围划分为若干个区间,然后统计这组数据在每个区间中出现的次数,称为 频数 ,由此得到一个频数表。以数据的取值为横坐标,频数为纵坐标,画出一个阶梯形的图,称为 直方图 ,或 频数分布图
若样本容量不大,能够手工做出频数表和直方图,当样本容量较大时则可以借助Matlab这样的软件了。让我们以下面的例子为例,介绍频数表和直方图的作法。

(1)数据输入
数据输入通常有两种方法,一种是在交互环境中直接输入,如果在统计中数据量比较大,这样作不太方便;另一种办法是先把数据写入一个纯文本数据文件data.txt中,数据列之间用空格和Tab键分割,之后以data.txt为文件名存放在某个子目录下,用Matlab中的load命令读入数据,具体做法是:
先把txt文件移入Matlab的工作文件夹中,之后在Matlab命令行或脚本中输入:

这样就在内存中建立了一个变量data它是一个包含有 个数据的矩阵。
为了得到我们需要的100个身高和体重均为一列的数据,我们对矩阵做如下处理:

(2)作频数表及其直方图
求频数用hist函数实现,其用法是:

得到数组(行列均可) 的频数表。它将区间 等分为 份(缺省时 为10), 返回 个小区间的频数, 返回 个小区间的中点。

同样的一个函数名hist还可以用来画出直方图。
对于本例的数据,可以编写如下程序画出数据的直方图。

得直方图如下:

下面我们介绍几种常用的统计量。

算术平均值 (简称均值)描述数据取值的平均位置,记作 ,

中位数 是将数据由小到大排序后位于中间位置的那个数值。
Matlab 中 mean(x)返回 x 的均值,median(x)返回中位数。

标准差 定义为:

它是各个数据与均值偏离程度的度量,这种偏离不妨称为 变异

方差 是标准差的平方 。

极差 是 的最大值与最小值之差。

Matlab 中 std(x)返回 x 的标准差,var(x)返回方差,range(x)返回极差。

你可能注意到标准差 s 的定义(2)中,对 的平方求和却被 除,这是出于无偏估计的要求。若需要改为被 除,Matlab 可用 std(x,1)和 var(x,1)来实现。

随机变量 的 阶 中心距 为 。

随机变量 的 偏度 峰度 指的是 的标准化变量 的三阶中心矩和四阶中心矩:

偏度反映分布的对称性, 称为右偏态,此时数据位于均值右边的比位于左边的多; 称为左偏态,情况相反;而 接近 0 则可认为分布是对称的。

峰度是分布形状的另一种度量,正态分布的峰度为 3,若 比 3 大得多,表示分布有沉重的尾巴,说明样本中含有较多远离均值的数据,因而峰度可以用作衡量偏离正态分布的尺度之一。

Matlab 中 moment(x,order)返回 x 的 order 阶中心矩,order 为中心矩的阶数。skewness(x)返回 x 的 偏度 ,kurtosis(x)返回 峰度

在以上用 Matlab 计算各个统计量的命令中,若 x 为矩阵,则作用于 x 的列,返回一个行向量。

对例1给出的学生身高和体重,用Matlab 计算这些统计量,程序如下:

统计量中最重要、最常用的是均值和标准差,由于样本是随机变量,它们作为样本的函数自然也是随机变量,当用它们去推断总体时,有多大的可靠性就与统计量的概率分布有关,因此我们需要知道几个重要分布的简单性质。

随机变量的特性完全由它的(概率)分布函数或(概率)密度函数来描述。设有随机变量 ,其分布函数定义为 的概率,即 。若 是连续型随机变量,则其密度函数 与 的关系为:

上 分位数是下面常用的一个概念,其定义为:对于 ,使某分布函数 的 ,称为这个分布的上 分位数,记作 。
我们前面画过的直方图是频数分布图,频数除以样本容量 ,称为频率, 充分大时频率是概率的近似,因此直方图可以看作密度函数图形的(离散化)近似。

正态分布可以说是最常见的(连续型)概率分布,成批生产时零件的尺寸,射击中弹着点的位置,仪器反复量测的结果,自然界中一种生物的数量特征等,多数情况下都服从正态分布,这不仅是观察和经验的总结,而且有着深刻的理论依据, 即在大量相互独立的、作用差不多大的随机因素影响下形成的随机变量,其极限分布为正态分布

鉴于正态分布的随机变量在实际生活中如此地常见,记住下面 3 个数字是有用的:

若 为相互独立的、服从标准正态分布 的随机变量,则它们的平方和 服从 分布,记作 , 称为自由度,它的期望 ,方差 。

若 ,且相互独立,则 服从 分布,记作 称自由度。
分布的密度函数曲线和 曲线形状相似。理论上 时, ,实际上当 时它与 就相差无几了。

若 ,且相互独立,则 服从 分布,记作 称自由度。

Matlab统计工具箱中有27种概率分布,这里只对上面所述4中分布列出命令的字符:

工具箱对每一种分布都提供五类函数,其命令的字符是:

当需要一种分布的某一种函数时,将以上所列的分布命令字符与函数命令字符接起来,并输入自变量(可以是标量、数组或矩阵)和参数就行了,如:

设总体 , 为一容量 的样本,其均值 和标准差 由式(1),(2)确定,则用 和 构造的下面两个分布在统计中是非常有用的。



设有两个总体 和 ,及由容量分别为 的两个样本确定的均值 和标准差 ,则:


其中:
且要求

9. 数学建模建模分为几种类型,分别用什么法求解

数学建模应当掌握的十类算法
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算
法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要
处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题
属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、
Lingo软件实现)
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉
及到图论的问题可以用这些方法解决,需要认真准备)
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计
中比较常用的方法,很多场合可以用到竞赛中)
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是
用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实
现比较困难,需慎重使用)
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛
题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好
使用一些高级语言作为编程工具)
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只
认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非
常重要的)
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常
用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调
用)
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该
要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab
进行处理)

阅读全文

与数学建模算法与应用电子版相关的资料

热点内容
dvd光盘存储汉子算法 浏览:757
苹果邮件无法连接服务器地址 浏览:962
phpffmpeg转码 浏览:671
长沙好玩的解压项目 浏览:144
专属学情分析报告是什么app 浏览:564
php工程部署 浏览:833
android全屏透明 浏览:736
阿里云服务器已开通怎么办 浏览:803
光遇为什么登录时服务器已满 浏览:302
PDF分析 浏览:484
h3c光纤全工半全工设置命令 浏览:143
公司法pdf下载 浏览:381
linuxmarkdown 浏览:350
华为手机怎么多选文件夹 浏览:683
如何取消命令方块指令 浏览:349
风翼app为什么进不去了 浏览:778
im4java压缩图片 浏览:362
数据查询网站源码 浏览:150
伊克塞尔文档怎么进行加密 浏览:892
app转账是什么 浏览:163