导航:首页 > 源码编译 > 算法分布式优化

算法分布式优化

发布时间:2023-07-18 10:25:40

㈠ 分布式算法的介绍

分布式算法(Distributed Algorithm)和集中式算法(Centralized Algorithm)在设计的方法和技巧上,有着非常大的不同,原因在于分布式系统和集中式系统在系统模型和结构上有着本质的区别,集中式算法所具备的一些基本特征,在分布式算法中,已经不复存在。

㈡ 分布式数据库的查询优化

指在执行分布式查询时选择查询执行计划的方法和关系运算符的实现算法。根据系统环境的不同,查询优化所使用的算法也有所不同,通常分为远程广域网环境和高速局域网环境,其区别主要在网络的带宽。对于一元运算符可以采用集中式数据库中的查询优化方法。而对于二元运算符,由于涉及场地间的数据传输,因此必须考虑通信代价。分布式查询中常见的连接运算执行策略包括:
(1)半连接方法:利用半连接运算的转换方法R∞S=(RµS)∞S。假设场地1和场地2上分别有关系R和关系S,首先在S上执行连接属性上的投影并将结果传输至场地1,在场地1上执行关系R与投影的连接操作,再将结果传输至场地2与关系S执行连接操作。这种方法能够降低执行连接运算时的网络通信代价,主要适用于带宽较低的远程广域网络。
(2)枚举法方法:指枚举关系运算符的物理执行计划,通过对比执行计划的代价选择执行算法的方法。其中,连接运算符的物理执行计划包括嵌套循环方法、哈希连接法和归并连接法。枚举法主要适用于以磁盘IO代价为主的高速局域网环境。

㈢ 分布式系统常用的一致性算法有哪些

在做服务器负载均衡时候可供选择的负载均衡的算法有很多,包括: 轮循算法(Round Robin)、哈希算法(HASH)、最少连接算法(Least Connection)、响应速度算法(Response Time)、加权法(Weighted )等。其中哈希算法是最为常用的算法. 典型的应用场景是: 有N台服务器提供缓存服务,需要对服务器进行负载均衡,将请求平均分发到每台服务器上,每台机器负责1/N的服务。 常用的算法是对hash结果取余数 (hash() mod N):对机器编号从0到N-1,按照自定义的hash()算法,对每个请求的hash()值按N取模,得到余数i,然后将请求分发到编号为i的机器。但这样的算法方法存在致命问题,如果某一台机器宕机,那么应该落在该机器的请求就无法得到正确的处理,这时需要将当掉的服务器从算法从去除,此时候会有(N-1)/N的服务器的缓存数据需要重新进行计算;如果新增一台机器,会有N /(N+1)的服务器的缓存数据需要进行重新计算。对于系统而言,这通常是不可接受的颠簸(因为这意味着大量缓存的失效或者数据需要转移)。那么,如何设计一个负载均衡策略,使得受到影响的请求尽可能的少呢? 在Memcached、Key-Value Store、Bittorrent DHT、LVS中都采用了Consistent Hashing算法,可以说Consistent Hashing 是分布式系统负载均衡的首选算法。 1、Consistent Hashing算法描述 下面以Memcached中的Consisten Hashing算法为例说明。 由于hash算法结果一般为unsigned int型,因此对于hash函数的结果应该均匀分布在[0,232-1]间,如果我们把一个圆环用232 个点来进行均匀切割,首先按照hash(key)函数算出服务器(节点)的哈希值, 并将其分布到0~232的圆上。 用同样的hash(key)函数求出需要存储数据的键的哈希值,并映射到圆上。然后从数据映射到的位置开始顺时针查找,将数据保存到找到的第一个服务器(节点)上。 Consistent Hashing原理示意图 新增一个节点的时候,只有在圆环上新增节点逆时针方向的第一个节点的数据会受到影响。删除一个节点的时候,只有在圆环上原来删除节点顺时针方向的第一个节点的数据会受到影响,因此通过Consistent Hashing很好地解决了负载均衡中由于新增节点、删除节点引起的hash值颠簸问题。 Consistent Hashing添加服务器示意图 虚拟节点(virtual nodes):之所以要引进虚拟节点是因为在服务器(节点)数较少的情况下(例如只有3台服务器),通过hash(key)算出节点的哈希值在圆环上并不是均匀分布的(稀疏的),仍然会出现各节点负载不均衡的问题。虚拟节点可以认为是实际节点的复制品(replicas),本质上与实际节点实际上是一样的(key并不相同)。引入虚拟节点后,通过将每个实际的服务器(节点)数按照一定的比例(例如200倍)扩大后并计算其hash(key)值以均匀分布到圆环上。在进行负载均衡时候,落到虚拟节点的哈希值实际就落到了实际的节点上。由于所有的实际节点是按照相同的比例复制成虚拟节点的州胡氏,因此解决了节点数较少的情况下哈希值在圆环上均匀分布的问题。 虚拟节点对Consistent Hashing结果的影响 从上图可以看出,在节点数为10个的情况下,每个实际节点的虚拟节点数为实际做团节点的100-200倍的时候,结果还是很均衡的。 第3段中有这些文字:“但这样的算法方法存在致命问题,如果某一台机器宕机,那么应该落在该机器的请求就无法册散得到正确的处理,这时需要将当掉的服务器从算法从去除,此时候会有(N-1)/N的服务器的缓存数据需要重新进行计算;” 为何是 (N-1)/N 呢?解释如下: 比如有 3 台机器,hash值 1-6 在这3台上的分布就是: host 1: 1 4 host 2: 2 5 host 3: 3 6 如果挂掉一台,只剩两台,模数取 2 ,那么分布情况就变成: host 1: 1 3 5 host 2: 2 4 6 可以看到,还在数据位置不变的只有2个: 1,2,位置发生改变的有4个,占共6个数据的比率是 4/6 = 2/3这样的话,受影响的数据太多了,势必太多的数据需要重新从 DB 加载到 cache 中,严重影响性能 【consistent hashing 的办法】 上面提到的 hash 取模,模数取的比较小,一般是负载的数量,而 consistent hashing 的本质是将模数取的比较大,为 2的32次方减1,即一个最大的 32 位整数。然后,就可以从容的安排数据导向了,那个图还是挺直观的。 以下部分为一致性哈希算法的一种PHP实现。点击下载

阅读全文

与算法分布式优化相关的资料

热点内容
dvd光盘存储汉子算法 浏览:757
苹果邮件无法连接服务器地址 浏览:962
phpffmpeg转码 浏览:671
长沙好玩的解压项目 浏览:142
专属学情分析报告是什么app 浏览:564
php工程部署 浏览:833
android全屏透明 浏览:732
阿里云服务器已开通怎么办 浏览:803
光遇为什么登录时服务器已满 浏览:302
PDF分析 浏览:484
h3c光纤全工半全工设置命令 浏览:141
公司法pdf下载 浏览:381
linuxmarkdown 浏览:350
华为手机怎么多选文件夹 浏览:683
如何取消命令方块指令 浏览:349
风翼app为什么进不去了 浏览:778
im4java压缩图片 浏览:362
数据查询网站源码 浏览:150
伊克塞尔文档怎么进行加密 浏览:890
app转账是什么 浏览:163