1. 用邻接表表示图进行深度优先遍历时,通常采用()来实现算法
使用栈来实现算法。
用邻接表表示图进行深度优先遍历时,通常采用栈来实现算法,广度遍历使用队列。
扩展材料:
深度优先遍历:类似与树的前序遍历。从图中的某个顶点v出发,访问此顶点,然后从v的未被访问到的邻接点进行遍历,直到图中所有和v有路径相通的顶点都被访问到
注:优先访问外层节点,访问到无新顶点时,会进行回退,访问未被访问过的分支顶点。
广度优先遍历:类似于树的层序遍历。从图中的某个顶点w出发,让顶点w入队,然后顶点w再出队,并让所有和顶点w相连的顶点入队,然后再出队一个顶点t,并让所有和t相连但未被访问过的顶点入队……由此循环,指定图中所有元素都出队。
参考资料来源:
知网论文-数据结构中图的遍历算法研究
2. 求图的深度优先遍历程序 c语言版
邻接表表示的图:#include"stdio.h"
#include"stdlib.h"#define MaxVertexNum 50 //定义最大顶点数typedef struct node{ //边表结点
int adjvex; //邻接点域
struct node *next; //链域
}EdgeNode;
typedef struct vnode{ //顶点表结点
char vertex; //顶点域
EdgeNode *firstedge; //边表头指针
}VertexNode;
typedef VertexNode AdjList[MaxVertexNum]; //AdjList是邻接表类型
typedef struct {
AdjList adjlist; //邻接表
int n,e; //图中当前顶点数和边数
} ALGraph; //图类型//=========建立图的邻接表=======
void CreatALGraph(ALGraph *G)
{
int i,j,k;
char a;
EdgeNode *s; //定义边表结点
printf("Input VertexNum(n) and EdgesNum(e): ");
scanf("%d,%d",&G->n,&G->e); //读入顶点数和边数
fflush(stdin); //清空内存缓冲
printf("Input Vertex string:");
for(i=0;i<G->n;i++) //建立边表
{
scanf("%c",&a);
G->adjlist[i].vertex=a; //读入顶点信息
G->adjlist[i].firstedge=NULL; //边表置为空表
}
printf("Input edges,Creat Adjacency List\n");
for(k=0;k<G->e;k++) { //建立边表
scanf("%d%d",&i,&j); //读入边(Vi,Vj)的顶点对序号
s=(EdgeNode *)malloc(sizeof(EdgeNode)); //生成边表结点
s->adjvex=j; //邻接点序号为j
s->next=G->adjlist[i].firstedge;
G->adjlist[i].firstedge=s; //将新结点*S插入顶点Vi的边表头部
s=(EdgeNode *)malloc(sizeof(EdgeNode));
s->adjvex=i; //邻接点序号为i
s->next=G->adjlist[j].firstedge;
G->adjlist[j].firstedge=s; //将新结点*S插入顶点Vj的边表头部
}
}
//=========定义标志向量,为全局变量=======
typedef enum{FALSE,TRUE} Boolean;
Boolean visited[MaxVertexNum];
//========DFS:深度优先遍历的递归算法======
void DFSM(ALGraph *G,int i)
{//以Vi为出发点对邻接链表表示的图G进行DFS搜索
EdgeNode *p;
printf("%c",G->adjlist[i].vertex); //访问顶点Vi
visited[i]=TRUE; //标记Vi已访问
p=G->adjlist[i].firstedge; //取Vi边表的头指针
while(p) { //依次搜索Vi的邻接点Vj,这里j=p->adjvex
if(! visited[p->adjvex]) //若Vj尚未被访问
DFSM(G,p->adjvex); //则以Vj为出发点向纵深搜索
p=p->next; //找Vi的下一个邻接点
}
}
void DFS(ALGraph *G)
{
int i;
for(i=0;i<G->n;i++)
visited[i]=FALSE; //标志向量初始化
for(i=0;i<G->n;i++)
if(!visited[i]) //Vi未访问过
DFSM(G,i); //以Vi为源点开始DFS搜索
} //==========BFS:广度优先遍历=========
void BFS(ALGraph *G,int k)
{ //以Vk为源点对用邻接链表表示的图G进行广度优先搜索
int i,f=0,r=0; EdgeNode *p;
int cq[MaxVertexNum]; //定义FIFO队列
for(i=0;i<G->n;i++)
visited[i]=FALSE; //标志向量初始化
for(i=0;i<=G->n;i++)
cq[i]=-1; //初始化标志向量
printf("%c",G->adjlist[k].vertex); //访问源点Vk
visited[k]=TRUE;
cq[r]=k; //Vk已访问,将其入队。注意,实际上是将其序号入队
while(cq[f]!=-1) { // 队列非空则执行
i=cq[f]; f=f+1; //Vi出队
p=G->adjlist[i].firstedge; //取Vi的边表头指针
while(p) { //依次搜索Vi的邻接点Vj(令p->adjvex=j)
if(!visited[p->adjvex]) { //若Vj未访问过
printf("%c",G->adjlist[p->adjvex].vertex); //访问Vj
visited[p->adjvex]=TRUE;
r=r+1; cq[r]=p->adjvex; //访问过的Vj入队
}
p=p->next; //找Vi的下一个邻接点
}
}//endwhile
}
//==========主函数===========
void main()
{
//int i;
ALGraph *G;
G=(ALGraph *)malloc(sizeof(ALGraph));
CreatALGraph(G);
printf("Print Graph DFS: ");
DFS(G);
printf("\n");
printf("Print Graph BFS: ");
BFS(G,3);
printf("\n");
}邻接矩阵表示的图:
#include"stdio.h"
#include"stdlib.h"
#define MaxVertexNum 100 //定义最大顶点数
typedef struct{
char vexs[MaxVertexNum]; //顶点表
int edges[MaxVertexNum][MaxVertexNum]; //邻接矩阵,可看作边表
int n,e; //图中的顶点数n和边数e
}MGraph; //用邻接矩阵表示的图的类型
//=========建立邻接矩阵=======
void CreatMGraph(MGraph *G)
{
int i,j,k;
char a;
printf("Input VertexNum(n) and EdgesNum(e): ");
scanf("%d,%d",&G->n,&G->e); //输入顶点数和边数
scanf("%c",&a);
printf("Input Vertex string:");
for(i=0;i<G->n;i++)
{
scanf("%c",&a);
G->vexs[i]=a; //读入顶点信息,建立顶点表
}
for(i=0;i<G->n;i++)
for(j=0;j<G->n;j++)
G->edges[i][j]=0; //初始化邻接矩阵
printf("Input edges,Creat Adjacency Matrix\n");
for(k=0;k<G->e;k++) { //读入e条边,建立邻接矩阵
scanf("%d%d",&i,&j); //输入边(Vi,Vj)的顶点序号
G->edges[i][j]=1;
G->edges[j][i]=1; //若为无向图,矩阵为对称矩阵;若建立有向图,去掉该条语句
}
}
//=========定义标志向量,为全局变量=======
typedef enum{FALSE,TRUE} Boolean;
Boolean visited[MaxVertexNum];
//========DFS:深度优先遍历的递归算法======
void DFSM(MGraph *G,int i)
{ //以Vi为出发点对邻接矩阵表示的图G进行DFS搜索,邻接矩阵是0,1矩阵
int j;
printf("%c",G->vexs[i]); //访问顶点Vi
visited[i]=TRUE; //置已访问标志
for(j=0;j<G->n;j++) //依次搜索Vi的邻接点
if(G->edges[i][j]==1 && ! visited[j])
DFSM(G,j); //(Vi,Vj)∈E,且Vj未访问过,故Vj为新出发点
}
void DFS(MGraph *G)
{
int i;
for(i=0;i<G->n;i++)
visited[i]=FALSE; //标志向量初始化
for(i=0;i<G->n;i++)
if(!visited[i]) //Vi未访问过
DFSM(G,i); //以Vi为源点开始DFS搜索
}
//===========BFS:广度优先遍历=======
void BFS(MGraph *G,int k)
{ //以Vk为源点对用邻接矩阵表示的图G进行广度优先搜索
int i,j,f=0,r=0;
int cq[MaxVertexNum]; //定义队列
for(i=0;i<G->n;i++)
visited[i]=FALSE; //标志向量初始化
for(i=0;i<G->n;i++)
cq[i]=-1; //队列初始化
printf("%c",G->vexs[k]); //访问源点Vk
visited[k]=TRUE;
cq[r]=k; //Vk已访问,将其入队。注意,实际上是将其序号入队
while(cq[f]!=-1) { //队非空则执行
i=cq[f]; f=f+1; //Vf出队
for(j=0;j<G->n;j++) //依次Vi的邻接点Vj
if(!visited[j] && G->edges[i][j]==1) { //Vj未访问
printf("%c",G->vexs[j]); //访问Vj
visited[j]=TRUE;
r=r+1; cq[r]=j; //访问过Vj入队
}
}
}
//==========main=====
void main()
{
//int i;
MGraph *G;
G=(MGraph *)malloc(sizeof(MGraph)); //为图G申请内存空间
CreatMGraph(G); //建立邻接矩阵
printf("Print Graph DFS: ");
DFS(G); //深度优先遍历
printf("\n");
printf("Print Graph BFS: ");
BFS(G,3); //以序号为3的顶点开始广度优先遍历
printf("\n");
}
3. 已知一个有向图如图,请分别写出从顶点a出发进行深度优先遍历和广度优先遍历所得到的顶点序列及生成树。
一、深度生成树:abdcefigh,如下图所示:
相关特点:
(1)生成树协议提供一种控制环路的方法。采用这种方法,在连接发生问题的时候,你控制的以太网能够绕过出现故障的连接。
(2)生成树中的根桥是一个逻辑的中心,并且监视整个网络的通信。最好不要依靠设备的自动选择去挑选哪一个网桥会成为根桥。
(3)生成树协议重新计算是繁冗的。恰当地设置主机连接端口(这样就不会引起重新计算),推荐使用快速生成树协议。
(4)生成树协议可以有效的抑制广播风暴。开启生成树协议后抑制广播风暴,网络将会更加稳定,可靠性、安全性会大大增强。
4. 无向有权的图的深度、广度优先遍历怎么做的啊,他的遍历序列怎么求呢
总结深度优先与广度优先的区别
1、区别
1) 二叉树的深度优先遍历的非递归的通用做法是采用栈,广度优先遍历的非递归的通用做法是采用队列。
2) 深度优先遍历:对每一个可能的分支路径深入到不能再深入为止,而且每个结点只能访问一次。要特别注意的是,二叉树的深度优先遍历比较特殊,可以细分为先序遍历、中序遍历、后序遍历。具体说明如下:
先序遍历:对任一子树,先访问根,然后遍历其左子树,最后遍历其右子树。
中序遍历:对任一子树,先遍历其左子树,然后访问根,最后遍历其右子树。
后序遍历:对任一子树,先遍历其左子树,然后遍历其右子树,最后访问根。
广度优先遍历:又叫层次遍历,从上往下对每一层依次访问,在每一层中,从左往右(也可以从右往左)访问结点,访问完一层就进入下一层,直到没有结点可以访问为止。
3)深度优先搜素算法:不全部保留结点,占用空间少;有回溯操作(即有入栈、出栈操作),运行速度慢。
广度优先搜索算法:保留全部结点,占用空间大; 无回溯操作(即无入栈、出栈操作),运行速度快。
5. 简述深度优先搜索遍历的方法。
简述深度优先搜索遍历的方法?深度优先搜索算法(Depth-First-Search, DFS),最初是一种用于遍历或搜索树和图的算法,在LeetCode中很常见,虽然感觉不难,但是理解起来还是有点难度的。
简要概括,深度优先的主要思想就是“不撞南墙不回头”,“一条路走到黑”,如果遇到“墙”或者“无路可走”时再去走下一条路。
思路
假如对树进行遍历,沿着树的深度遍历树的节点,尽可能深的搜索树的分支,当达到边际时回溯上一个节点再进行搜索。如下图的一个二叉树。
首先给出这个二叉树的深度优先遍历的结果(假定先走左子树):1->2->4->5->3->6->7
那是怎样得到这样的结果呢?
根据深度优先遍历的概念:沿着这树的某一分支向下遍历到不能再深入为止,之后进行回溯再选定新的分支。
定义节点
class TreeNode{
int val;
TreeNode left;
TreeNode right;
}
递归的方式
分别对左右子树进行递归,一直到底才进行回溯。如果不了解递归可以参考我的博客你真的懂递归吗?。
class Solution{
public void (TreeNode root){
if(root == null){
return;
}
System.out.print(root.val +"->");
(root.left);
(root.right);
}
}
迭代的方式
上面实现了递归方式的深度优先遍历,也可以利用栈把递归转换为迭代的方式。
但是为了保证出栈的顺序,需要先压入右节点,再压左节点。
class Solution{
public void (TreeNode root){
if(root == null) return;
Stack<TreeNode> stack = new Stack<>();
stack.push(root);
while(!stack.isEmpty()){
TreeNode node = stack.pop();
System.out.print(node.val + "->");
if(node.right != null){
stack.push(node.right);
}
if(node.left != null){
stack.push(node.left);
}
}
}
}
接着再列举个利用深度优先遍历的方式的题目
扫雷
给定一个表示游戏板的二维字符矩阵,'M'表示一个未挖出的地雷,'E'表示一个未挖出的空方块,'B' 代表没有相邻(上,下,左,右,和所有4个对角线)地雷的已挖出的空白方块,数字('1' 到 '8')表示有多少地雷与这块已挖出的方块相邻,'X' 则表示一个已挖出的地雷。
根据以下规则,返回相应位置被点击后对应的面板:
如果一个地雷('M')被挖出,游戏就结束了- 把它改为'X'。
如果一个没有相邻地雷的空方块('E')被挖出,修改它为('B'),并且所有和其相邻的方块都应该被递归地揭露。
如果一个至少与一个地雷相邻的空方块('E')被挖出,修改它为数字('1'到'8'),表示相邻地雷的数量。
如果在此次点击中,若无更多方块可被揭露,则返回面板。
示例
输入:
[['E', 'E', 'E', 'E', 'E'],
['E', 'E', 'M', 'E', 'E'],
['E', 'E', 'E', 'E', 'E'],
['E', 'E', 'E', 'E', 'E']]
Click : [3,0]
输出:
[['B', '1', 'E', '1', 'B'],
['B', '1', 'M', '1', 'B'],
['B', '1', '1', '1', 'B'],
['B', 'B', 'B', 'B', 'B']]
思路:根据给定的规则,当给定一个Click坐标,当不为雷的时候以此坐标为基点向四周8个方向进行深度遍历,把空格E填充为B,并且把与地雷M相连的空方块标记相邻地雷的数量。
注意 :
在这个题中可以沿着8个方向递归遍历,所有要注意程序中,采用了两个for循环可以实现向8个方向递归。
6. 图遍历的算法
图的遍历方法目前有深度优先搜索法和广度(宽度)优先搜索法两种算法。 深度优先搜索法是树的先根遍历的推广,它的基本思想是:从图G的某个顶点v0出发,访问v0,然后选择一个与v0相邻且没被访问过的顶点vi访问,再从vi出发选择一个与vi相邻且未被访问的顶点vj进行访问,依次继续。如果当前被访问过的顶点的所有邻接顶点都已被访问,则退回到已被访问的顶点序列中最后一个拥有未被访问的相邻顶点的顶点w,从w出发按同样的方法向前遍历,直到图中所有顶点都被访问。其递归算法如下:
Boolean visited[MAX_VERTEX_NUM]; //访问标志数组
Status (*VisitFunc)(int v); //VisitFunc是访问函数,对图的每个顶点调用该函数
void DFSTraverse (Graph G, Status(*Visit)(int v)){
VisitFunc = Visit;
for(v=0; v<G.vexnum; ++v)
visited[v] = FALSE; //访问标志数组初始化
for(v=0; v<G.vexnum; ++v)
if(!visited[v])
DFS(G, v); //对尚未访问的顶点调用DFS
}
void DFS(Graph G, int v){ //从第v个顶点出发递归地深度优先遍历图G
visited[v]=TRUE; VisitFunc(v); //访问第v个顶点
for(w=FirstAdjVex(G,v); w>=0; w=NextAdjVex(G,v,w))
//FirstAdjVex返回v的第一个邻接顶点,若顶点在G中没有邻接顶点,则返回空(0)。
//若w是v的邻接顶点,NextAdjVex返回v的(相对于w的)下一个邻接顶点。
//若w是v的最后一个邻接点,则返回空(0)。
if(!visited[w])
DFS(G, w); //对v的尚未访问的邻接顶点w调用DFS
} 图的广度优先搜索是树的按层次遍历的推广,它的基本思想是:首先访问初始点vi,并将其标记为已访问过,接着访问vi的所有未被访问过的邻接点vi1,vi2,…, vi t,并均标记已访问过,然后再按照vi1,vi2,…, vi t的次序,访问每一个顶点的所有未被访问过的邻接点,并均标记为已访问过,依次类推,直到图中所有和初始点vi有路径相通的顶点都被访问过为止。其非递归算法如下:
Boolean visited[MAX_VERTEX_NUM]; //访问标志数组
Status (*VisitFunc)(int v); //VisitFunc是访问函数,对图的每个顶点调用该函数
void BFSTraverse (Graph G, Status(*Visit)(int v)){
VisitFunc = Visit;
for(v=0; v<G.vexnum, ++v)
visited[v] = FALSE;
initQueue(Q); //置空辅助队列Q
for(v=0; v<G.vexnum; ++v)
if(!visited[v]){
visited[v]=TRUE; VisitFunc(v);
EnQueue(Q, v); //v入队列
while(!QueueEmpty(Q)){
DeQueue(Q, u); //队头元素出队并置为u
for(w=FirstAdjVex(G,u); w>=0; w=NextAdjVex(G,u,w))
if(!Visited[w]){ //w为u的尚未访问的邻接顶点
Visited[w]=TRUE; VisitFunc(w);
EnQueue(Q, w);
}
}
}
}