导航:首页 > 源码编译 > 改进pso算法

改进pso算法

发布时间:2023-07-19 21:03:02

A. pso的离散算法

很多优化问题涉及到离散或二值的变量,典型的例子包括调度问题或路由问题。而PSO算法的更新公式和过程是面向连续空间并为其设计的,因此需要做一些修改使之适应离散空间的情况。编码的修改可能很简单,难点在于定义速度的意义和确定轨迹的变化。
Kennedy定义了第一个离散二进制版本的PSO算法。微粒使用二进制字符串进行编码。通过使用sigmoid函数,速度被限制在[0, 1]区间之内,并被解释为“概率的变化”。Yang对该方法在量子空间进行了扩展。
Mohan提出了几种二进制方法(直接方法、量子方法、正则方法、偏差向量方法以及混合方法),但是从有限的实验中没有得出什么结论。Clerc对一些专用于某些约束优化问题如TSP问题的PSO算法变种进行了试验,结果显示该方法比较有前途。Pang使用模糊矩阵来表示微粒的位置和速度,对PSO算法的算符进行了重定义,并将其应用到TSP问题的求解。Pampara将PSO算法与信号处理中的角调制技术结合起来,将高维二进制问题降维为一个在连续空间中定义的四维问题,并通过求解该四维问题来获得原问题的解。Afshinmanesh重新定义了离散PSO算法中的加法与乘法,并使用人工免疫系统中的阴性选择来实现速度限制Vmax。
Hu提出了一种改进PSO算法来处理排列问题。微粒被定义为一组特定值的排列,速度基于两个微粒的相似度重新定义,微粒根据由它们的速度所定义的随机率来变换到一个新的排列。引入了一个变异因子来防止当前的pBest陷入局部最小。在n皇后问题上的初步研究显示改进的PSO算法在解决约束满意问题方面很有前途。
Migliore对原始的二进制PSO算法进行了一些改进,提出了可变行为二进制微粒群算法(VB-BPSO)和可变动态特性二进制微粒群算法(VD-BPSO)。VB-BPSO算法按照连续PSO算法的速度更新公式的思想设计了一个新的速度更新公式,用来确定微粒位置向量每一位为1的概率。而VD-BPSO算法则是根据一定规则在两组不同参数确定的VB-BPSO算法之间切换。Migliore应用该算法设计出一种简单鲁棒的自适应无源天线。
Parsopoulos以标准函数为例测试微粒群优化算法解决整数规划问题的能力。Salman将任务分配问题抽象为整数规划模型并提出基于微粒群优化算法的解决方法。两者对迭代产生的连续解均进行舍尾取整后评价其质量。但是PSO算法生成的连续解与整数规划问题的目标函数评价值之间存在多对一的映射,以整型变量表示的目标函数不能准确反映算法中连续解的质量,而由此导致的冗余解空间与相应的冗余搜索降低了算法的收敛效率。
高尚采用交叉策略和变异策略,将PSO算法用来解决集合划分问题。赵传信重新定义了微粒群位置和速度的加法与乘法操作,并将PSO算法应用到0/1背包问题求解中。EL-Gallad在PSO算法中引入探索和勘探两个算子,用于求解排序问题。Firpi提出了BPSO算法的一种保证收敛的版本(但是并未证明其保证收敛性),并将其应用到特征选择问题。
上述离散PSO算法都是间接的优化策略,根据概率而非算法本身确定二进制变量,未能充分利用PSO算法的性能。在处理整数变量时,PSO算法有时候很容易陷入局部最小。原始PSO算法的思想是从个体和同伴的经验进行学习,离散PSO算法也应该借鉴该思想。高海兵基于传统算法的速度—位移更新操作,在分析微粒群优化机理的基础上提出了广义微粒群优化模型(GPSO),使其适用于解决离散及组合优化问题。GPSO 模型本质仍然符合微粒群优化机理,但是其微粒更新策略既可根据优化问题的特点设计,也可实现与已有方法的融合。基于类似的想法,Goldbarg将局部搜索和路径重连过程定义为速度算子,来求解TSP问题。

B. pso的约束优化

约束优化问题的目标是在满足一组线性或非线性约束的条件下,找到使得适应值函数最优的解。对于约束优化问题,需要对原始PSO算法进行改进来处理约束。
一种简单的方法是,所有的微粒初始化时都从可行解开始,在更新过程中,仅需记住在可行空间中的位置,抛弃那些不可行解即可。该方法的缺点是对于某些问题,初始的可行解集很难找到。或者,当微粒位置超出可行范围时,可将微粒位置重置为之前找到的最好位置,这种简单的修正就能成功找到一系列Benchmark问题的最优解。Paquet让微粒在运动过程中保持线性约束,从而得到一种可以解决线性约束优化问题的PSO算法。Pulido引入扰动算子和约束处理机制来处理约束优化问题。Park提出一种改进的PSO算法来处理等式约束和不等式约束。
另一种简单的方法是使用惩罚函数将约束优化问题转变为无约束优化问题,之后再使用PSO算法来进行求解。Shi将约束优化问题转化为最小—最大问题,并使用两个共同进化的微粒群来对其求解。谭瑛提出一种双微粒群的PSO算法,通过在微粒群间引入目标信息与约束信息项来解决在满足约束条件下求解目标函数的最优化问题。Zavala在PSO算法中引入两个扰动算子,用来解决单目标约束优化问题。
第三种方法是采用修复策略,将微粒发现的违反约束的解修复为满足约束的解。
约束满足
PSO算法设计的初衷是用来求解连续问题,,对微粒的位置和速度计算公式进行了重新定义,使用变量和它的关联变量存在的冲突数作为微粒的适应度函数,并指出该算法在求解约束满足问题上具有一定优势。Lin在Schoofs工作的基础上研究了使用PSO算法来求解通用的n元约束满足问题。杨轻云在Schoofs工作的基础上对适应度函数进行了改进,把最大度静态变量序列引入到适应度函数的计算中。

C. 粒子群优化算法

姓名:杨晶晶  学号:21011210420  学院:通信工程学院

【嵌牛导读】

传统的多目标优化方法是将多目标问题通过加权求和转化为单目标问题来处理的,而粒子算法主要是解决一些多目标优化问题的(例如机械零件的多目标设计优化),其优点是容易实现,精度高,收敛速度快。

【嵌牛鼻子】粒子群算法的概念、公式、调参以及与遗传算法的比较。

【嵌牛提问】什么是粒子群算法?它的计算流程是什么?与遗传算法相比呢?

【嵌牛正文】

1. 概念

        粒子群优化算法(PSO:Particle swarm optimization) 是一种进化计算技术(evolutionary computation),源于对鸟群捕食的行为研究。

        粒子群优化算法的基本思想:是通过群体中个体之间的协作和信息共享来寻找最优解。

        PSO的优势:在于简单容易实现并且没有许多参数的调节。目前已被广泛应用于函数优化、神经网络训练、模糊系统控制以及其他遗传算法的应用领域。

2. 算法

2.1 问题抽象

        鸟被抽象为没有质量和体积的微粒(点),并延伸到N维空间,粒子i在N维空间的位置表示为矢量Xi=(x1,x2,…,xN),飞行速度表示为矢量Vi=(v1,v2,…,vN)。每个粒子都有一个由目标函数决定的适应值(fitness value),并且知道自己到目前为止发现的最好位置(pbest)和现在的位置Xi。这个可以看作是粒子自己的飞行经验。除此之外,每个粒子还知道到目前为止整个群体中所有粒子发现的最好位置(gbest)(gbest是pbest中的最好值),这个可以看作是粒子同伴的经验。粒子就是通过自己的经验和同伴中最好的经验来决定下一步的运动。

2.2 更新规则

      PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次的迭代中,粒子通过跟踪两个“极值”(pbest,gbest)来更新自己。在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置。

      公式(1)的第一部分称为【记忆项】,表示上次速度大小和方向的影响;公式(1)的第二部分称为【自身认知项】,是从当前点指向粒子自身最好点的一个矢量,表示粒子的动作来源于自己经验的部分;公式(1)的第三部分称为【群体认知项】,是一个从当前点指向种群最好点的矢量,反映了粒子间的协同合作和知识共享。粒子就是通过自己的经验和同伴中最好的经验来决定下一步的运动。

      以上面两个公式为基础,形成了PSO的标准形式。

      公式(2)和 公式(3)被视为标准PSO算法。

2.3 标准PSO算法流程

    标准PSO算法的流程:

    1)初始化一群微粒(群体规模为N),包括随机位置和速度;

    2)评价每个微粒的适应度;

    3)对每个微粒,将其适应值与其经过的最好位置pbest作比较,如果较好,则将其作为当前的最好位置pbest;

    4)对每个微粒,将其适应值与其经过的最好位置gbest作比较,如果较好,则将其作为当前的最好位置gbest;

    5)根据公式(2)、(3)调整微粒速度和位置;

    6)未达到结束条件则转第2)步。

        迭代终止条件根据具体问题一般选为最大迭代次数Gk或(和)微粒群迄今为止搜索到的最优位置满足预定最小适应阈值。

      公式(2)和(3)中pbest和gbest分别表示微粒群的局部和全局最优位置。

    当C1=0时,则粒子没有了认知能力,变为只有社会的模型(social-only):

被称为全局PSO算法。粒子有扩展搜索空间的能力,具有较快的收敛速度,但由于缺少局部搜索,对于复杂问题

比标准PSO 更易陷入局部最优。

    当C2=0时,则粒子之间没有社会信息,模型变为只有认知(cognition-only)模型:

      被称为局部PSO算法。由于个体之间没有信息的交流,整个群体相当于多个粒子进行盲目的随机搜索,收敛速度慢,因而得到最优解的可能性小。

2.4 参数分析

        参数:群体规模N,惯性因子 ,学习因子c1和c2,最大速度Vmax,最大迭代次数Gk。

        群体规模N:一般取20~40,对较难或特定类别的问题可以取到100~200。

        最大速度Vmax:决定当前位置与最好位置之间的区域的分辨率(或精度)。如果太快,则粒子有可能越过极小点;如果太慢,则粒子不能在局部极小点之外进行足够的探索,会陷入到局部极值区域内。这种限制可以达到防止计算溢出、决定问题空间搜索的粒度的目的。

        权重因子:包括惯性因子和学习因子c1和c2。使粒子保持着运动惯性,使其具有扩展搜索空间的趋势,有能力探索新的区域。c1和c2代表将每个粒子推向pbest和gbest位置的统计加速项的权值。较低的值允许粒子在被拉回之前可以在目标区域外徘徊,较高的值导致粒子突然地冲向或越过目标区域。

        参数设置:

        1)如果令c1=c2=0,粒子将一直以当前速度的飞行,直到边界。很难找到最优解。

        2)如果=0,则速度只取决于当前位置和历史最好位置,速度本身没有记忆性。假设一个粒子处在全局最好位置,它将保持静止,其他粒子则飞向它的最好位置和全局最好位置的加权中心。粒子将收缩到当前全局最好位置。在加上第一部分后,粒子有扩展搜索空间的趋势,这也使得的作用表现为针对不同的搜索问题,调整算法的全局和局部搜索能力的平衡。较大时,具有较强的全局搜索能力;较小时,具有较强的局部搜索能力。

        3)通常设c1=c2=2。Suganthan的实验表明:c1和c2为常数时可以得到较好的解,但不一定必须等于2。Clerc引入收敛因子(constriction factor) K来保证收敛性。

      通常取为4.1,则K=0.729.实验表明,与使用惯性权重的PSO算法相比,使用收敛因子的PSO有更快的收敛速度。其实只要恰当的选取和c1、c2,两种算法是一样的。因此使用收敛因子的PSO可以看作使用惯性权重PSO的特例。

        恰当的选取算法的参数值可以改善算法的性能。

3. PSO与其它算法的比较

3.1 遗传算法和PSO的比较

  1)共性:

  (1)都属于仿生算法。

  (2)都属于全局优化方法。

  (3)都属于随机搜索算法。

  (4)都隐含并行性。

  (5)根据个体的适配信息进行搜索,因此不受函数约束条件的限制,如连续性、可导性等。

  (6)对高维复杂问题,往往会遇到早熟收敛和收敛 性能差的缺点,都无法保证收敛到最优点。

    2)差异:   

    (1)PSO有记忆,好的解的知识所有粒子都保 存,而GA(Genetic Algorithm),以前的知识随着种群的改变被改变。

    (2)PSO中的粒子仅仅通过当前搜索到最优点进行共享信息,所以很大程度上这是一种单共享项信息机制。而GA中,染色体之间相互共享信息,使得整个种群都向最优区域移动。

    (3)GA的编码技术和遗传操作比较简单,而PSO相对于GA,没有交叉和变异操作,粒子只是通过内部速度进行更新,因此原理更简单、参数更少、实现更容易。

    (4)应用于人工神经网络(ANN)

    GA可以用来研究NN的三个方面:网络连接权重、网络结构、学习算法。优势在于可处理传统方法不能处理的问题,例如不可导的节点传递函数或没有梯度信息。

    GA缺点:在某些问题上性能不是特别好;网络权重的编码和遗传算子的选择有时较麻烦。

    已有利用PSO来进行神经网络训练。研究表明PSO是一种很有潜力的神经网络算法。速度较快且有较好的结果。且没有遗传算法碰到的问题。

D. 急求:微粒群算法的改进(程序资料)

1 多目标优化
相对传统多目标优化方法, PSO在求解多目标问题上具有很大优势。首先, PSO的高效搜索能力有利于得到多目标意义下的最优解;其次, PSO通过代表整个解集的种群按内在的并行方式同时搜索多个非劣解,因此容易搜索到多个Pareto 最优解; 再则, PSO的通用性使其适合于处理所有类型的目标函数和约束;另外, PSO 很容易与传统方法相结合,进而提出解决特定问题的高效方法。就PSO 本身而言,为了更好地解决多目标优化问题,必须解决全局最优粒子和个体最优粒子的选择问题。对于全局最优粒子的选择,一方面要求算法具有较好的收敛速度,另一方面要求所得解在Pareto边界上具有一定的分散性。对于个体最优粒子的选择,则要求较小的计算复杂性,即仅通过较少的比较次数达到非
劣解的更新。迄今,基于PSO的多目标优化主要有以下几种
思路:
(1)向量法和权重法。文献[ 20 ]利用固定权重法、适应性权重法和向量评价法,首次将PSO 用于解决MO问题。然而对于给定的优化问题,权重法通常很难获得一组合适的权重,而向量评价法往往无法给出MO问题的满意解。
(2)基于Pareto的方法。文献[ 21 ]将Pareto排序机制和PSO相结合来处理多目标优化问题,通过Pareto排序法选择一组精英解,并采用轮盘赌方式从中选择全局最优粒子。尽管轮盘赌选择机制设计的目的是使所有Pareto个体的选择概率相同,但是实际上只有少数个体得到较大的选择概率,因此不利于维持种群的多样性;文献[ 22 ]通过在PSO中引入Pareto竞争机制和微粒知识库来选择全局最优粒子。由于非劣解是将候选个体与从种群中随机选出的比较集进行比较来确定的,因此该算法成功与否就取决于比较集规模参数的设定。如果这个参数太小,该过程从种群中选出的非劣个体可能过少;如果这个参数太大,则可能发生早熟收敛现象。
(3)距离法。文献[ 23 ]根据个体当前解与Pa2reto解之间的距离来分配其适应值,从而选择全局最优粒子。由于距离法需要初始化潜在解,如果初始潜在值太大,不同解的适应值的差别则不明显。这将导致选择压力过小或个体均匀分布,从而导致PSO算法收敛非常缓慢。
(4)邻域法。文献[ 24 ]提出一种基于动态邻域的选择策略,将一个目标定义为优化目标,而将其它所有目标定义为邻域目标,进而提出了选择全局最优粒子的动态邻域策略,但该方法对优化目标的选择以及邻域目标函数的排序较敏感。
(5)多种群法。文献[ 25 ]将种群分为多个子种群,每个子种群单独进行PSO 运算,各个子种群之间通过信息交换来搜索Pareto最优解。但是由于需要增加微粒数目而增加了计算量。
(6)非优势排序法。文献[ 26 ]利用非优势排序的方法选择全局最优粒子。该方法在整个种群中,比较微粒的个体最优粒子与其后代,有利于提供合适的选择压力,同时使用小生境技术提高种群多样性。然而在整个种群中比较所有微粒的个体最优粒子与其后代,其本质不利于种群多样性,容易形成早熟。另外,文献[ 27 ]将博弈理论中的Maximin策略引入PSO来解决多MO问题。利用Maximin策略确定微粒的适应值可以很好地确定Pareto最优解而不需要聚类和小生境技术。
2 约束优化
近年来, PSO算法在约束优化方面也取得了一定进展。基于PSO的约束优化工作主要分为两类: ①罚函数法; ②设计特定的进化操作或约束修正因子。文献[ 28 ]采用罚函数法,利用非固定多段映射罚函数对约束优化问题进行转化,再利用PSO求解转化后的问题,仿真结果显示PSO相对进化策略和遗传算法有优越性,但其罚函数的设计过于复杂,不利于求解;文献[ 29 ]采用可行解保留策略处理约束,即一方面更新存储区时所有粒子仅保留可行的解,另一方面在初始化阶段所有粒子均从可行解空间取值,然而初始可行解空间对于许多问题是很难确定的;文献[ 30 ]提出了具有多层信息共享策略的微粒群原理来处理约束,根据约束矩阵采用多层Pareto排序机制来产生优良粒子,进而用一些优良的粒子来决定其余个体的搜索方向。
3 离散优化对于离散优化而言,解空间是离散点的集合,而非连续区域,因此利用PSO解决离散优化问题就必须修正速度和位置更新公式,或者是对问题进行变形。目前,基于PSO的离散优化工作可分为如下三类:
(1)将速度作为位置变化的概率。文献[ 31 ]首次提出了离散二值PSO。其微粒位置编码采用二进制方式,通过采用Sigmoid函数将速度约束于[ 0, 1 ]区间,来代表微粒位置取1的概率;文献[ 32 ]对文献
[ 31 ]中的方法进行改进,用于解决置换排列问题。其中微粒用置换排列表示,而速度则根据两个粒子的相似度来定义,决定微粒位置变化的概率,同时还引入变异操作防止最优粒子陷入局部极小。
(2)重新定义PSO操作。文献[ 33 ]通过重新定义微粒的位置、速度、以及它们之间的加减乘操作,提出一种新的离散PSO,并用于求解旅行商问题。尽管该算法的效果较差,但是提供了一种解决组合优化问题的新的思路。
(3)直接将连续PSO用于离散情况。文献[ 34 ]利用连续PSO 解决分布式计算机任务分配问题。为了将实数转化为正整数,把实数的符号和小数部
分去掉。结果表明该方法在解的质量和算法速度方面,要优于遗传算法。
4 动态优化
在许多实际工程问题中,优化的环境是不确定的,或者是动态的。因此,优化算法必须具备随环境动态变化而对最优解作出相应调整的能力,或者是算法具有一定的鲁棒性。文献[ 35 ]首次提出利用PSO跟踪动态系统;文献[ 36 ]提出用自适应PSO来自动跟踪动态系统的变化,该方法通过对种群中最好微粒的检测和对微粒重新初始化, 有效增强了PSO对系统变化的跟踪能力;文献[ 37 ]为了处理快速变化的动态环境,在微粒速度更新公式中增加了一项变化项,从而无需检测环境的变化就可以跟踪环境。尽管该方面的研究成果至今较少,但不容质疑这是一项重要的研究内容。

微粒群算法的MATLAB程序实现

初始化粒子群;
DO
For每个粒子
计算其适应度;
If (适应度优于粒子历史最佳值)
用Xi更新历史最佳个体Pi;
End
选取当前粒子群中最佳粒子;
If (当前最佳粒子优于群历史最佳粒子)
用当前群最佳粒子更新Pg;
For每个粒子
按式①更新粒子速度;
按式②更新粒子位置;
End
While最大迭代数未达到或最小误差未达到。

E. 如何用粒子群优化(PSO)算法实现多目标优化

粒子群算法,也称粒子群优化算法(ParticleSwarmOptimization),缩写为PSO,是近年来发展起来的一种新的进化算法(EvolutionaryAlgorithm-EA)。PSO算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover)和“变异”(Mutation)操作,它通过追随当前搜索到的最优值来寻找全局最优。这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。粒子群算法是一种并行算法。

F. pso的多目标优化

在多目标优化问题中,每个目标函数可以分别独立进行优化,然后为每个目标找到最优值。但是,很少能找到对所有目标都是最优的完美解,因为目标之间经常是互相冲突的,只能找到Pareto最优解。
PSO算法中的信息共享机制与其他基于种群的优化工具有很大的不同。在遗传算法(GA)中,染色体通过交叉互相交换信息,是一种双向信息共享机制。但是在PSO算法中,只有gBest(或nBest)给其他微粒提供信息,是一种单向信息共享机制。由于点吸引特性,传统的PSO算法不能同时定位构成Pareto前锋的多个最优点。虽然通过对所有目标函数赋予不同的权重将其组合起来并进行多次运行,可以获得多个最优解,但是还是希望有方法能够一次同时找到一组Pareto最优解。
在PSO算法中,一个微粒是一个独立的智能体,基于其自身和同伴的经验来搜索问题空间。前者为微粒更新公式中的认知部分,后者为社会部分,这二者在引导微粒的搜索方面都有关键的作用。因此,选择适当的社会和认知引导者(gBest和pBest)就是MO-PSO算法的关键点。认知引导者的选择和传统PSO算法应遵循相同的规则,唯一的区别在于引导者应按照Pareto支配性来确定。社会引导者的选择包括两个步骤。第一步是建立一个从中选取引导者的候选池。在传统PSO算法中,引导者从邻居的pBest之中选取。而在MO-PSO算法中更常用的方法是使用一个外部池来存储更多的Pareto最优解。第二步就是选择引导者。gBest的选择应满足如下两个标准:首先,它应该能为微粒提供有效的引导来获得更好的收敛速度;第二,它还需要沿Pareo前锋来提供平衡的搜索,以维持种群的多样性。文献中通常使用两种典型的方法:(1)轮盘选择模式,该方式按照某种标准进行随机选择,其目的是维持种群的多样性;(2)数量标准:按照某种不涉及随机选择的过程来确定社会引导者。
Moore最早研究了PSO算法在多目标优化中的应用,强调了个体和群体搜索二者的重要性,但是没有采用任何维持多样性的方法。Coello在非劣最优概念的基础上应用了一个外部“容器”来记录已找到的非支配向量,并用这些解来指导其它微粒的飞行。Fieldsend采用一种称为支配树的数据结构来对最优微粒进行排序。Parsopoulos应用了权重聚合的方法。Hu应用了动态邻域,并在此基础上利用扩展记忆,按词典顺序依次优化各个目标。Ray使用聚集机制来维持多样性,并用一个多水平筛来处理约束。Lu使用了动态种群策略。Bartz-Beielstein采用归档技术来提高算法性能。Li在PSO算法中采用NSGA-II算法中的主要机制,在局部最优微粒及其后代微粒之间确定局部最优微粒;并此基础上又提出一种新的算法,在适应值函数中使用最大最小策略来确定Pareto支配性。张利彪使用多个目标函数下各最优位置的均值来指导微粒飞行。Pulido使用多个子种群并采用聚类技术来求解多目标规划问题。Mahfouf采用加权聚合方法来计算微粒的适应值,并据此确定引导微粒的搜索。Salazar-Lechuga使用适应值共享技术来引导微粒的搜索。Gong提出微粒角度的概念,并使用最小微粒角度和微粒密度来确定局部最优和全局最优微粒。基于AER模型,Zhang提出一种新的智能PSO模型,来将种群驱向Pareto最优解集。Ho提出一种新的适应值分配机制,并使用寿命(Age)变量来保存和选择最优历史记录。Huang将CLPSO算法应用到多目标规划中。Ho提出另一种基于Pareto的与尺度无关的适应值函数,并使用一种基于正交试验设计的智能运动机制(IMM)来确定微粒的下一步运动。Branke系统研究了多种个体最优微粒的选择方法对MOPSO算法性能的影响。张勇考虑储备集更新策略在多目标PSO算法中的关键作用,提出一种两阶段储备集更新策略。
原萍提出一种分布式PSO算法—分割域多目标PSO算法(DRMPSO),并将其应用到基站优化问题。向量评价PSO算法(VEPSO)是一种受向量评价遗传算法(VEGA)的启发提出的一种算法,在VEPSO算法中,每个种群仅使用多个目标函数之一来进行评价,同时各种群之间互相交互经验。将每个种群分配到一台网络PC上,即可直接使VEPSO算法并行化,以加速收敛。Vlachogiannis应用并行VEPSO算法来确定发电机对输电系统的贡献。熊盛武利用PSO算法的信息传递机制,在PSO算法中引入多目标演化算法常用的归档技术,并采用环境选择和配对选择策略,使得整个群体在保持适当的选择压力的情况下收敛于Pareto最优解集。
由于适应值的计算非常消耗计算资源,为了减少计算量,需要减少适应值评价的次数。Reyes-Sierra采用适应值继承和估计技术来实现该目标,并比较了十五种适应值继承技术和四种估计技术应用于多目标PSO算法时的效果。
保持MOPSO中的多样性的方法主要有两种:sigma方法和ε-支配方法。Villalobos-Arias在目标函数空间中引入条块划分来形成聚类,从而保持多样性。

G. 分析标准粒子群算法的不足及改进的方法

一个以上的目标,以优化
相对传统的多目标优化方法在解决多目标问题,PSO具有很大的优势。首先,PSO算法和高效的搜索功能,有利于在这个意义上,多目标的最优解;其次,PSO代表了整个解决方案的人口集固有的并行性,同时搜索多个非劣解,所以容易搜索多个Pareto最佳的解决方案;此外,PSO通用的适合处理所有类型的目标函数和约束条件,PSO容易与传统相结合的方法,和然后提出了有效的方法来解决一个具体的问题。 PSO本身,为了更好地解决多目标优化问题,必须解决的问题的全局最优粒子和个人选择的最优粒子。为全局最优粒子的选择,一方面,该算法具有更好的收敛速度,另一方面帕累托边界分散体的溶液中。如果在最佳的单个颗粒的选择,需要较少的计算复杂性,并且是仅由较少数量的比较非
劣解更新。迄今为止,基于PSO的多目标优化,主要有以下
思路:
(1)向量法和加权方法。文献[20]的固定权重法,自适应权重法和向量评估方法的第一次,PSO解决MO问题。然而,对于一个给定的优化问题,权重的方法通常是很难获得一组合适的权重向量评价方法MO的问题是,往往无法得到满意的解决方案。
(2)基于Pareto方法。 [21]帕累托排序机制和PSO相结合,处理的问题,多目标优化,Pareto排序方法来选择一组的精英,和轮盘赌选择全局最优粒子。虽然轮盘赌选择机制,使所有的帕累托个人选择的概率是一样的,但实际上只有少数人的选择的概率就越大,因此不利于保持种群多样性;文献[22]通过引入在PSO帕累托竞争机制,选择全局最优粒子的颗粒知识基础。候选个人随机选自人口比较集进行比较,以确定非劣解,该算法的成功取决于比较集的大小的参数设置。如果这个参数是太小了,选择的过程,从人口的非劣效性个人可能是太小了,如果这个参数是太大,它可能会出现过早收敛。
(3)距离的方法。 [23],被分配的各个的当前的解决方案之间的距离的基础上Pa2reto的解决方案,其适应值,以便选择全局最优粒子。随着距离的方法需要被初始化潜在的解决方案,如果初始电位值太大,不同的解决方案,以适应不同的值并不显着。这将导致在选择压力太小或个别均匀分布,导致在PSO算法收敛速度非常慢。
(4)附近的“。文献[24]提出了动态邻域的选择策略,为优化目标的定义,目标,和其他所有的目标定义的目标附近,然后选择全局最优粒子的动态邻域的策略,但该方法更敏感的目标函数的优化目标选择和附近的排序。
(5)多组法。文献[25]的人口划分成多个子群,以及每个子群PSO算法,通过搜索Pareto最优解的各种子群之间的信息交流。然而,由于需要增加的粒子的数量增加的计算量。
(6)非排名的方法。 [26]使用非主导的排序选择全局最优的粒子。整个人口,粒子的个人最好成绩粒子和它的后代,有利于提供一个适当的选择压力,小生境技术,以增加种群多样性。比较所有粒子的个人最好成绩颗粒在整个人群遗传给后代,但是,由于其本身的性质是不利于人口的多样性,容易形成早熟。此外,文献[27]最大最小策略,博弈论引入PSO解决多MO。最大最小策略,以确定粒子的适应值,可以判断帕累托最优的解决方案,而不需要集群和小生境技术。
2约束优化
在最近几年也取得了一些进展,PSO算法在约束最优化。基于PSO-的约束优化工作分为两种类型:①罚函数法;②设计特定的进化操作或约束修正系数。 [28]采用罚函数法,采用非固定多段映射罚函数将约束的优化问题,然后利用PSO解决问题的转换后,模拟结果表明,该算法相对进化策略和遗传算法的优势,但罚函数的设计过于复杂,不利于解决;文献[29],一个可行的解决方案,保留策略处理约束,即,一方面要更新所有的颗粒的存储区域中到只保留可行的解决方案,在另一方面在初始化阶段的所有的颗粒从一个可行的解决方案的空间值?初始的可行的解决方案空间,然而,是难以确定的很多问题,文献[30 ]提出的多层信息共享策略粒子群与约束原则来处理,根据约束矩阵多层Pareto排序机制的微粒,从而一些微粒,以确定个人的搜索方向的其余。
3离散优化为离散优化解决方案空间是离散点的集合,而不是连续PSO解决离散优化问题,必须予以纠??正的速度和位置更新公式,或变形。基于PSO的离散优化可分为以下三类:
速度(1)的位置变化的概率。 [31]首先提出了离散二进制PSO。二进制粒子的位置编码器,Sigmoid函数,速度约束在[0,1],代表粒子的概率立场;法[32] [31]在文献
提高的地址更换安排。安排更换颗粒,速度是指根据两个粒子的相似性,以确定粒子的位置变化也引入突变操作,以防止陷入局部极小的最优粒子的概率。
(2)重新定义的PSO的操作。 [33]通过重新定义粒子的位置,速度,和他们的加法和减法乘法运算,提出了一种新的离散粒子群,并为解决旅行商问题。虽然该算法是有效的,但它提供了一种新的思维方式求解组合优化问题。
(3)连续PSO离散的情况下。 [34]采用连续PSO,解决分布式计算机任务的分配问题。于实数被转换为一个正整数,和符号的实数部分和小数部分的
分除去。结果表明,在溶液中的质量和速度的方法的算法是优于遗传算法。
4动态优化
在许多实际工程问题,优化环境是不确定的,或动态。因此,优化算法必须有能力与环境的动态变化做出相应的调整,以最佳的解决方案,该算法具有一定的鲁棒性。 [35]首次提出了PSO跟踪动态系统[36]提出了自适应PSO自动跟踪动态系统的变化,种群粒子检测方法和粒子重新初始化PSO系统变化的跟踪能力增强;文献[37]迅速变化的动态环境中,在粒子速度更新公式的变化条目的增加,消除了需要在环境中的变化来检测,可以跟踪环境处理。虽然该研究少得多,但不容质疑的,是一个重要的研究内容。

粒子群算法的MATLAB程序

初始化粒子群;

对于每个粒子
计算他们的身体健康;
如果(健身优于粒子的历史最好值)
历史最好的个人裨锡更新;

如果选择当前粒子群粒子;(当前的最优粒子比历史最好粒子组)
与目前最好的粒子更新PG组;对于每个粒子

更新粒子类型①速度;
更新的位置粒子类型②;

虽然还没有达到最大迭代次数,或不符合的最小误差。

H. pso的算法结构

对微粒群算法结构的改进方案有很多种,对其可分类为:采用多个子种群;改进微粒学习对象的选取策略;修改微粒更新迭代公式;修改速度更新策略;修改速度限制方法、位置限制方法和动态确定搜索空间;与其他搜索技术相结合;以及针对多模问题所作的改进。
第一类方案是采用多个子种群。柯晶考虑优化问题对收敛速度和寻优精度的双重要求并借鉴多群体进化算法的思想,将寻优微粒分成两组,一组微粒采用压缩因子的局部模式PSO算法,另一组微粒采用惯性权重的全局模式PSO算法,两组微粒之间采用环形拓扑结构。对于高维优化问题,PSO算法需要的微粒个数很多,导致计算复杂度常常很高,并且很难得到好的解。因此,出现了一种协作微粒群算法(Cooperative ParticleSwarm Optimizer, CPSO-H),将输入向量拆分成多个子向量,并对每个子向量使用一个微粒群来进行优化。虽然CPSO-H算法使用一维群体来分别搜索每一维,但是这些搜索结果被一个全局群体集成起来之后,在多模问题上的性能与原始PSO算法相比有很大的改进。Chow使用多个互相交互的子群,并引入相邻群参考速度。冯奇峰提出将搜索区域分区,使用多个子群并通过微粒间的距离来保持多样性。陈国初将微粒分成飞行方向不同的两个分群,其中一分群朝最优微粒飞行,另一分群微粒朝相反方向飞行;飞行时,每一微粒不仅受到微粒本身飞行经验和本分群最优微粒的影响,还受到全群最优微粒的影响。Niu在PSO算法中引入主—从子群模式,提出一种多种群协作PSO算法。Seo提出一种多组PSO算法(Multigrouped PSO),使用N组微粒来同时搜索多模问题的N个峰。Selleri使用多个独立的子群,在微粒速度的更新方程中添加了一些新项,分别使得微粒向子群历史最优位置运动,或者远离其他子群的重心。王俊年借鉴递阶编码的思想,构造出一种多种群协同进化PSO算法。高鹰借鉴生态学中环境和种群竞争的关系,提出一种基于种群密度的多种群PSO算法。
第二类方案是改进微粒学习对象的选取策略。Al-kazemi提出多阶段PSO算法,将微粒按不同阶段的临时搜索目标分组,这些临时目标允许微粒向着或背着它自己或全局最好位置移动。Ting对每个微粒的pBest进行操作,每一维从其他随机确定的维度学习,之后如果新的pBest更好则替换原pBest;该文还比较了多种不同学习方式对应的PSO算法的性能。Liang提出一种新颖的学习策略CLPSO,利用所有其他微粒的历史最优信息来更新微粒的速度;每个微粒可以向不同的微粒学习,并且微粒的每一维可以向不同的微粒学习。该策略能够保持群体的多样性,防止早熟收敛,可以提高PSO算法在多模问题上的性能;通过实验将该算法与其它几种PSO算法的变种进行比较,实验结果表明该算法在解决多模复杂问题时效果很好。Zhao在PSO算法中使用适应值最好的n个值来代替速度更新公式中的gBest。Abdelbar提出一种模糊度量,从而使得每个邻域中有多个适应值最好的微粒可以影响其它微粒。Wang也采用多个适应值最好的微粒信息来更新微粒速度,并提出一种模糊规则来自适应地确定参数。崔志华提出一种动态调整的改进PSO算法,在运行过程中动态调整极限位置,使得每个微粒的极限位置在其所经历的最好位置与整体最好位置所形成的动态圆中分布。与原始PSO算法相反,有一类方法是远离最差位置而非飞向最优位置。Yang提出在算法中记录最差位置而非最优位置,所有微粒都远离这些最差位置。与此类似,Leontitsis在微粒群算法中引入排斥子的概念,在使用个体最优位置和群体最优位置信息的同时,在算法中记录当前的个体最差位置和群体最差位置,并利用它们将微粒排斥到最优位置,从而让微粒群更快地到达最优位置。孟建良提出一种改进的PSO算法,在进化的初期,微粒以较大的概率向种群中其他微粒的个体最优学习;在进化后期,微粒以较大的概率向当前全局最优个体学习。Yang在PSO算法中引入轮盘选择技术来确定gBest,使得所有个体在进化早期都有机会引领搜索方向,从而避免早熟。
第三类方案是修改微粒更新公式。Hendtlass在速度更新方程中给每个微粒添加了记忆能力。He在速度更新方程中引入被动聚集机制。曾建潮通过对PSO算法的速度进化迭代方程进行修正,提出一种保证全局收敛的随机PSO算法。Zeng在PSO算法中引入加速度项,使得PSO算法从一个二阶随机系统变为一个三阶随机系统,并使用PID控制器来控制算法的演化。为了改进PSO算法的全局搜索能力,Ho提出一种新的微粒速度和位置更新公式,并引入寿命(Age)变量。
第四类方案是修改速度更新策略。Liu认为过于频繁的速度更新会弱化微粒的局部开采能力并减慢收敛,因此提出一种松弛速度更新(RVU)策略,仅当微粒使用原速度不能进一步提高适应值时才更新速度,并通过试验证明该策略可以大大减小计算量并加速收敛。罗建宏对同步模式和异步模式的PSO算法进行了对比研究,试验结果表明异步模式收敛速度显着提高,同时寻优效果更好。Yang在微粒的更新规则中引入感情心理模型。Liu采用一个最小速度阈值来控制微粒的速度,并使用一个模糊逻辑控制器来自适应地调节该最小速度阈值。张利彪提出了对PSO算法增加更新概率,对一定比例的微粒并不按照原更新公式更新,而是再次随机初始化。Dioan利用遗传算法(GA)来演化PSO算法的结构,即微粒群中各微粒更新的顺序和频率。
第五类方案是修改速度限制方法、位置限制方法和动态确定搜索空间。Stacey提出一种重新随机化速度的速度限制和一种重新随机化位置的位置限制。Liu在[76]的基础上,在PSO算法中引入动量因子,来将微粒位置限制在可行范围内。陈炳瑞提出一种根据微粒群的最佳适应值动态压缩微粒群的搜索空间与微粒群飞行速度范围的改进PSO算法。
第六类方案是通过将PSO算法与一些其他的搜索技术进行结合来提高PSO算法的性能,主要目的有二,其一是提高种群多样性,避免早熟;其二是提高算法局部搜索能力。这些混合算法包括将各种遗传算子如选择、交叉、变异引入PSO算法,来增加种群的多样性并提高逃离局部最小的能力。Krink通过解决微粒间的冲突和聚集来增强种群多样性,提出一种空间扩展PSO算法(Spatial ExtensionPSO,SEPSO);但是SEPSO算法的参数比较难以调节,为此Monson提出一种自适应调节参数的方法。用以提高种群多样性的其他方法或模型还包括“吸引—排斥”、捕食—被捕食模型、耗散模型、自组织模型、生命周期模型(LifeCycle model)、贝叶斯优化模型、避免冲突机制、拥挤回避(Crowd Avoidance)、层次化公平竞争(HFC)、外部记忆、梯度下降技术、线性搜索、单纯形法算子、爬山法、劳动分工、主成分分析技术、卡尔曼滤波、遗传算法、随机搜索算法、模拟退火、禁忌搜索、蚁群算法(ACO)、人工免疫算法、混沌算法、微分演化、遗传规划等。还有人将PSO算法在量子空间进行了扩展。Zhao将多主体系统(MAS)与PSO算法集成起来,提出MAPSO算法。Medasani借鉴概率C均值和概率论中的思想对PSO算法进行扩展,提出一种概率PSO算法,让算法分勘探和开发两个阶段运行。
第七类方案专门针对多模问题,希望能够找到多个较优解。为了能使PSO算法一次获得待优化问题的多个较优解,Parsopoulos使用了偏转(Deflection)、拉伸(Stretching)和排斥(Repulsion)等技术,通过防止微粒运动到之前已经发现的最小区域,来找到尽可能多的最小点。但是这种方法会在检测到的局部最优点两端产生一些新的局部最优点,可能会导致优化算法陷入这些局部最小点。为此,Jin提出一种新的函数变换形式,可以避免该缺点。基于类似思想,熊勇提出一种旋转曲面变换方法。
保持种群多样性最简单的方法,是在多样性过小的时候,重置某些微粒或整个微粒群。Lvbjerg在PSO算法中采用自组织临界性作为一种度量,来描述微粒群中微粒相互之间的接近程度,来确定是否需要重新初始化微粒的位置。Clerc提出了一种“Re-Hope”方法,当搜索空间变得相当小但是仍未找到解时(No-Hope),重置微粒群。Fu提出一种带C-Pg变异的PSO算法,微粒按照一定概率飞向扰动点而非Pg。赫然提出了一种自适应逃逸微粒群算法,限制微粒在搜索空间内的飞行速度并给出速度的自适应策略。
另一种变种是小生境PSO算法,同时使用多个子种群来定位和跟踪多个最优解。Brits还研究了一种通过调整适应值计算方式的方法来同时找到多个最优解。Li在PSO算法中引入适应值共享技术来求解多模问题。Zhang在PSO算法中采用顺序生境(SequentialNiching)技术。在小生境PSO算法的基础上,还可以使用向量点积运算来确定各个小生境中的候选解及其边界,并使该过程并行化,以获得更好的结果。但是,各种小生境PSO算法存在一个共同的问题,即需要确定一个小生境半径,且算法性能对该参数很敏感。为解决该问题,Bird提出一种自适应确定niching参数的方法。
Hendtlass在PSO算法中引入短程力的概念,并基于此提出一种WoSP算法,可以同时确定多个最优点。刘宇提出一种多模态PSO算法,用聚类算法对微粒进行聚类,动态地将种群划分成几个类,并且使用微粒所属类的最优微粒而非整个种群的最好微粒来更新微粒的速度,从而可以同时得到多个近似最优解。Li在PSO算法中引入物种的概念,但是由于其使用的物种间距是固定的,该方法只适用于均匀分布的多模问题;为此,Yuan对该算法进行扩展,采用多尺度搜索方法对物种间距加以自适应的调整。
此外,也有研究者将PSO算法的思想引入其他算法中,如将PSO算法中微粒的运动规则嵌入到进化规划中,用PSO算法中的运动规则来替代演化算法中交叉算子的功能。

I. 粒子群优化算法的PSO

演化计算可以用来研究神经网络的三个方面:网络连接权重,网络结构(网络拓扑结构,传递函数),网络学习算法。
不过大多数这方面的工作都集中在网络连接权重,和网络拓扑结构上。在GA中,网络权重和/或拓扑结构一般编码为染色体(Chromosome),适应函数(fitness function)的选择一般根据研究目的确定。例如在分类问题中,错误分类的比率可以用来作为适应值。 这里用一个简单的例子说明PSO训练神经网络的过程。这个例子使用分类问题的基准函数 (Benchmark function)IRIS数据集。(Iris 是一种鸢尾属植物) 在数据记录中,每组数据包含Iris花的四种属性:萼片长度,萼片宽度,花瓣长度,和花瓣宽度,三种不同的花各有50组数据. 这样总共有150组数据或模式。
我们用3层的神经网络来做分类。现在有四个输入和三个输出。所以神经网络的输入层有4个节点,输出层有3个节点我们也可以动态调节隐含层节点的数目,不过这里我们假定隐含层有6个节点。我们也可以训练神经网络中其他的参数。不过这里我们只是来确定网络权重。粒子就表示神经网络的一组权重,应该是4*6+6*3=42个参数。权重的范围设定为[-100,100] (这只是一个例子,在实际情况中可能需要试验调整).在完成编码以后,我们需要确定适应函数。对于分类问题,我们把所有的数据送入神经网络,网络的权重有粒子的参数决定。然后记录所有的错误分类的数目作为那个粒子的适应值。现在我们就利用PSO来训练神经网络来获得尽可能低的错误分类数目。PSO本身并没有很多的参数需要调整。所以在实验中只需要调整隐含层的节点数目和权重的范围以取得较好的分类效果。

J. pso的优化求解

PSO算法被广泛应用于各种优化问题,并且已经成为优化领域中的一个有效算法。除了普通函数优化之外,还包括如下方面。
混合整数非线性规划
很多求解整数规划的算法是在采用实数域的算法进行优化后,再将结果取整作为整数规划的近似解。这种做法常常导致不满足约束或远离最优解。谭瑛提出一种在整数空间中直接进行进化计算的PSO算法。刘钊针对混合整数非线性规划中可行解产生代价较高的问题,建立了保证都是合法解的备用微粒库,并提出微粒迁移策略,帮助微粒跳出局部最优。
噪声和动态环境
动态系统的状态会经常改变,甚至可能会连续变化。许多实际系统都会涉及到动态环境。例如,由于顾客的优先级、意外的设备维护等导致的变化,调度系统中大多数计算时间都被用来进行重新调度。在实际应用中,这些系统状态的变化就需要经常进行重新优化。
最初使用微粒群算法跟踪动态系统的工作由Carlisle提出,通过周期性地重置所有微粒的记忆来跟踪动态系统。Eberhart也采用类似想法;之后Hu提出一种自适应PSO算法,能够自动跟踪动态系统中的不同变化,并在抛物线benchmark函数上对不同的环境检测和响应技术进行了实验,其中使用的检测方法是监控种群中最优微粒的行为。后来Carlisle使用搜索空间中的一个随机点来确定环境是否发生变化,但是这需要集中控制,与PSO算法的分布式处理模型不符。为此Cui提出TDPSO算法,让最优历史位置的适应值随着时间减小,从而不再需要集中控制。Blackwell在微粒的更新公式中添加了一项惩罚项,来保持微粒处于一个扩展的群中,以应对快速变化的动态环境,该方法中不需要检测最优点是否发生变化。
Parsopoulos等的试验表明,基本PSO算法就可以有效而稳定地在噪声环境中工作,且在很多情况下,噪声的存在还可以帮助PSO算法避免陷入局部最优。Parsopoulos还通过试验研究了UPSO算法在动态环境中的性能。Pugh提出一种抗噪声的PSO算法。Pan将假设检验和最优计算预算分配(OCBA)技术引入微粒群算法,提出PSOOHT算法,来解决噪声环境下的函数优化问题。
上述工作的研究对象都是简单的动态系统,所采用的实验函数是简单的单模函数,并且所涉及的变化都是简单环境下的均匀变化(即固定步长)。而事实上,实际的动态系统经常是非线性的,并在复杂的多模搜索空间中非均匀变化。Li采用四个PSO模型,对一系列不同的动态环境进行了对比研究。
上述方法均是针对仅跟踪单个最优点的情况,

阅读全文

与改进pso算法相关的资料

热点内容
dvd光盘存储汉子算法 浏览:757
苹果邮件无法连接服务器地址 浏览:962
phpffmpeg转码 浏览:671
长沙好玩的解压项目 浏览:142
专属学情分析报告是什么app 浏览:564
php工程部署 浏览:833
android全屏透明 浏览:732
阿里云服务器已开通怎么办 浏览:803
光遇为什么登录时服务器已满 浏览:301
PDF分析 浏览:484
h3c光纤全工半全工设置命令 浏览:141
公司法pdf下载 浏览:381
linuxmarkdown 浏览:350
华为手机怎么多选文件夹 浏览:683
如何取消命令方块指令 浏览:349
风翼app为什么进不去了 浏览:778
im4java压缩图片 浏览:362
数据查询网站源码 浏览:150
伊克塞尔文档怎么进行加密 浏览:890
app转账是什么 浏览:163