导航:首页 > 源码编译 > python算法顺序表题

python算法顺序表题

发布时间:2023-07-20 02:51:24

python 运算符计算顺序

这个运算不是顺序运算的。
3>2==2相当于计算
3>2
and
2==2。所以结果是True不是False

❷ python算法设计的步骤有三步分别是

1. 弄清楚题目的意思,列出题目的输入、输出、约束条件
其中又一道题目是这样的:“有一个mxn的矩阵,每一行从左到右是升序的,每一列从上到下是升序的。请实现一个函数,在矩阵中查找元素elem,找到则返回elem的位置。”题设只说了行和列是升序的,我在草稿纸上画了一个3x4的矩阵,里面的元素是1~12,于是我就想当然的认为矩阵的左上角是最小的元素,右下角是最大的元素。于是整个题目的思考方向就错了。
2. 思考怎样让算法的时间复杂度尽可能的小
继续以上面的题目为例子。可以有如下几种算法:
a. 遍历整个矩阵进行查找,那么复杂度为O(m*n);
b. 因为每一行是有序的,所以可以对每一行进行二分查找,复杂度为O(m*logn)。但是这样只用到了行有序的性质。
c. 网上查了一下,最优的算法是从矩阵的左下角开始,比较左下角的元素(假设为X)与elem的大小,如果elem比X大,那么X所在的那一列元素就都被排除了,因为X是该列中最大的了,比X还大,那么肯定比X上面的都大;如果elem比X小,那么X所在的那一行就可以排除了,因为X是这一行里最小的了,比X还小那么肯定比X右边的都小。每迭代一次,矩阵的尺寸就缩小一行或一列。复杂度为O(max(m,n))。
可以先从复杂度较高的实现方法入手,然后再考虑如何利用题目的特定条件来降低复杂度。
3. 编写伪代码或代码

❸ Python乒乓球比赛顺序

Python解题源代码如下:

#!/usr/bin/python
# -*- coding: UTF-8 -*-

for i in range(ord('x'),ord('z') + 1):
for j in range(ord('x'),ord('z') + 1):
if i != j:
for k in range(ord('x'),ord('z') + 1):
if (i != k) and (j != k):
if (i != ord('x')) and (k != ord('x')) and (k != ord('z')):
print 'order is a -- %s\t b -- %s\tc--%s' % (chr(i),chr(j),chr(k))

❹ python顺序表

本问题回答如下:你可以根据自己的需求稍微改动一下
# -*- coding: cp936 -*-
class StuInfo:
def __init__(self):
self.Stu=[{"Sno":"1","Sname":"姓名","ChineseScore":64,"MathsScore":34,"EnglishScore":94,"ComputerScore":83},
{"Sno":"2","Sname":"姓名","ChineseScore":44,"MathsScore":24,"EnglishScore":44,"ComputerScore":71},
{"Sno":"3","Sname":"姓名","ChineseScore":74,"MathsScore":35,"EnglishScore":74,"ComputerScore":93},
{"Sno":"4","Sname":"姓名","ChineseScore":94,"MathsScore":54,"EnglishScore":24,"ComputerScore":73}]
self.attribute={"Sno":"学号",
"Sname":"姓名",
"ChineseScore":"语文成绩",
"MathsScore":"数学成绩",
"EnglishScore":"英语成绩",
"ComputerScore":"计算机成绩"
}
def _add(self):
'''添加'''
singleInfo={}
for i in self.attribute:
if "Score" in i:
singleInfo[i]=int(raw_input(self.attribute[i]+"\n"))
else:
singleInfo[i]=raw_input(self.attribute[i]+"\n").strip()
self.Stu.append(singleInfo)
print "添加成功OK"
for i in singleInfo:
print i,"=",singleInfo[i]

def _del(self):
"""删除学号为Sno的记录"""
Sno=raw_input("学号:\n")
self.Stu.remove(self.__getInfo(Sno))
print "删除成功OK"

def _update(self):
"""更新数据"""
Sno=raw_input("学号\n").strip()
prefix="修改"
updateOperate={"1":"ChineseScore",
"2":"MathsScore",
"3":"EnglishScore",
"4":"ComputerScore"}
for i in updateOperate:
print i,"-->",prefix+self.attribute[updateOperate[i]]
getOperateNum=raw_input("选择操作:\n")
if getOperateNum:
getNewValue=int(raw_input("输入新的值:\n"))
record=self.__getInfo(Sno)
record[updateOperate[getOperateNum]]=getNewValue
print "修改"+record["Sname"]+"的"+str(updateOperate[getOperateNum])+"成绩=",getNewValue,"\n成功OK"

def _getInfo(self):
"""查询数据"""
while True:
print "1->学号查询 2->条件查询 3->退出"
getNum=raw_input("选择:\n")
if getNum=="1":
Sno=raw_input("学号:\n")
print filter(lambda record:record["Sno"]==Sno,self.Stu)[0]
elif getNum=="2":
print "ChineseScore 语文成绩;","MathsScore 数学成绩;","EnglishScore 英语成绩;","ComputerScore 计算机成绩;"
print "等于 ==,小于 <, 大于 > ,大于等于 >=,小于等于<= ,不等于!="
print "按如下格式输入查询条件 eg: ChineseScore>=60 "
expr=raw_input("条件:\n")
Infos=self.__getInfo(expr=expr)
if Infos:
print "共%d记录"%len(Infos)
for i in Infos:
print i
else:
print "记录为空"
elif getNum=="3":
break
else:
pass
def __getInfo(self,Sno=None,expr=""):
"""查询数据
根据学号 _getInfo("111111")
根据分数 _getInfo("EnglishSorce>80")"""
if Sno:
return filter(lambda record:record["Sno"]==Sno,self.Stu)[0]
for operate in [">=",">","<=","<","==","!="]:
if operate in expr:
gradeName,value=expr.split(operate)
return filter(lambda record: eval( repr(record[gradeName.strip()])+operate+value.strip()) ,self.Stu)
return {}

def _showAll(self):
"""显示所有记录"""
for i in self.Stu:
print i

@staticmethod
def test():
"""测试"""
_StuInfo=StuInfo()
while True:
print "1->录入数据 2->修改数据 3->删除数据 4->查询数据 5->查看数据 6->退出"
t=raw_input("选择:\n")
if t=="1":
print "录入数据"
_StuInfo._add()
elif t=="2":
print "修改数据"
_StuInfo._update()
elif t=="3":
print "删除数据"
_StuInfo._del()
elif t=="4":
print "查询数据"
_StuInfo._getInfo()
elif t=="5":
print "显示所有记录"
_StuInfo._showAll()
elif t=="6":
break
else:
pass
if __name__=="__main__":
StuInfo.test()
希望本次回答对你的提问有所帮助谢谢

❺ Python算法系列—深度优先遍历算法

一、什么是深度优先遍历
深度优先遍历算法是经典的图论算法。从某个节点v出发开始进行搜索。不断搜索直到该节点所有的边都被遍历完,当节点v所有的边都被遍历完以后,深度优先遍历算法则需要回溯到v以前驱节点来继续搜索这个节点。
注意:深度优先遍历问题一定要按照规则尝试所有的可能才行。

二、二叉树

2.二叉树类型
二叉树类型:空二叉树、满二叉树、完全二叉树、完美二叉树、平衡二叉树。

空二叉树:有零个节点
完美二叉树:每一层节点都是满的二叉树(如1中举例的图)
满二叉树:每一个节点都有零个或者两个子节点
完全二叉树:出最后一层外,每一层节点都是满的,并且最后一层节点全毁行历部从左排列
平衡二叉树:每个节点的两个子树的深度相差不超过1.

注:国内对完美二叉树和满二叉树定义相同
3.二叉树相关术语
术语 解释
度 节点的度为节点的子树个数
叶子节点 度为零的节点
分支节点 度不为零的节点
孩子节点 节点下的两个子节点
双亲节点 节点上一层的源节点
兄弟节点 拥有同一双亲节点的节点
根 二叉树的源头节点
深度 二叉树中节点的层的数量

DLR(先序):
LDR(中序):
LRD(后序):
注意:L代表左子树R代表右子树;D代表根

6.深度优先遍历和广度优先遍历
深度优先遍历:前序、中序和后序都是深度优先遍历
从根节点出发直奔最远节点,
广度优先遍历:首先访问举例根节点最近的节纤搜点,按层次递进,以广度优先遍历上图的顺序为:1-2-3-4-5-6-7
三、面试题+励志
企鹅运维面试题:带局
1.二叉树遍历顺序:看上文
2.用你熟悉的语言说说怎么创建二叉树? python看上文

❻ 面试必会八大排序算法(Python)

一、插入排序

介绍

插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据。

算法适用于少量数据的排序,时间复杂度为O(n^2)。

插入排算法是稳定的排序方法。

步骤

①从第一个元素开始,该元素可以认为已经被排序

②取出下一个元素,在已经排序的元素序列中从后向前扫描

③如果该元素(已排序)大于新元素,将该元素移到下一位置

④重复步骤3,直到找到已排序的元素小于或者等于新元素的位置

⑤将新元素插入到该位置中

⑥重复步骤2

排序演示

算法实现

二、冒泡排序

介绍

冒泡排序(Bubble Sort)是一种简单的排序算法,时间复杂度为O(n^2)。

它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

原理

循环遍历列表,每次循环找出循环最大的元素排在后面;

需要使用嵌套循环实现:外层循环控制总循环次数,内层循环负责每轮的循环比较。

步骤

①比较相邻的元素。如果第一个比第二个大,就交换他们两个。

②对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。

③针对所有的元素重复以上的步骤,除了最后一个。

④持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

算法实现:

三、快速排序

介绍

快速排序(Quicksort)是对冒泡排序的一种改进,借用了分治的思想,由C. A. R. Hoare在1962年提出。

基本思想

快速排序的基本思想是:挖坑填数 + 分治法。

首先选出一个轴值(pivot,也有叫基准的),通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

实现步骤

①从数列中挑出一个元素,称为 “基准”(pivot);

②重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边);

③对所有两个小数列重复第二步,直至各区间只有一个数。

排序演示

算法实现

四、希尔排序

介绍

希尔排序(Shell Sort)是插入排序的一种,也是缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法,时间复杂度为:O(1.3n)。

希尔排序是基于插入排序的以下两点性质而提出改进方法的:

·插入排序在对几乎已经排好序的数据操作时, 效率高, 即可以达到线性排序的效率;

·但插入排序一般来说是低效的, 因为插入排序每次只能将数据移动一位。

基本思想

①希尔排序是把记录按下标的一定量分组,对每组使用直接插入算法排序;

②随着增量逐渐减少,每组包1含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法被终止。

排序演示

算法实现

五、选择排序

介绍

选择排序(Selection sort)是一种简单直观的排序算法,时间复杂度为Ο(n2)。

基本思想

选择排序的基本思想:比较 + 交换。

第一趟,在待排序记录r1 ~ r[n]中选出最小的记录,将它与r1交换;

第二趟,在待排序记录r2 ~ r[n]中选出最小的记录,将它与r2交换;

以此类推,第 i 趟,在待排序记录ri ~ r[n]中选出最小的记录,将它与r[i]交换,使有序序列不断增长直到全部排序完毕。

排序演示

选择排序的示例动画。红色表示当前最小值,黄色表示已排序序列,蓝色表示当前位置。

算法实现

六、堆排序

介绍

堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。

利用数组的特点快速指定索引的元素。

基本思想

堆分为大根堆和小根堆,是完全二叉树。

大根堆的要求是每个节点的值不大于其父节点的值,即A[PARENT[i]] >=A[i]。

在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。

排序演示

算法实现

七、归并排序

介绍

归并排序(Merge sort)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

基本思想

归并排序算法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。

算法思想

自上而下递归法(假如序列共有n个元素)

① 将序列每相邻两个数字进行归并操作,形成 floor(n/2)个序列,排序后每个序列包含两个元素;

② 将上述序列再次归并,形成 floor(n/4)个序列,每个序列包含四个元素;

③ 重复步骤②,直到所有元素排序完毕。

自下而上迭代法

① 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;

② 设定两个指针,最初位置分别为两个已经排序序列的起始位置;

③ 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;

④ 重复步骤③直到某一指针达到序列尾;

⑤ 将另一序列剩下的所有元素直接复制到合并序列尾。

排序演示

算法实现

八、基数排序

介绍

基数排序(Radix Sort)属于“分配式排序”,又称为“桶子法”。

基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m) ,其中 r 为采取的基数,而m为堆数。

在某些时候,基数排序法的效率高于其他的稳定性排序法。

基本思想

将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。

基数排序按照优先从高位或低位来排序有两种实现方案:

MSD(Most significant digital) 从最左侧高位开始进行排序。先按k1排序分组, 同一组中记录, 关键码k1相等,再对各组按k2排序分成子组, 之后, 对后面的关键码继续这样的排序分组, 直到按最次位关键码kd对各子组排序后. 再将各组连接起来,便得到一个有序序列。MSD方式适用于位数多的序列。

LSD (Least significant digital)从最右侧低位开始进行排序。先从kd开始排序,再对kd-1进行排序,依次重复,直到对k1排序后便得到一个有序序列。LSD方式适用于位数少的序列。

排序效果

算法实现

九、总结

各种排序的稳定性、时间复杂度、空间复杂度的总结:

平方阶O(n²)排序:各类简单排序:直接插入、直接选择和冒泡排序;

从时间复杂度来说:

线性对数阶O(nlog₂n)排序:快速排序、堆排序和归并排序;

O(n1+§))排序,§是介于0和1之间的常数:希尔排序 ;

线性阶O(n)排序:基数排序,此外还有桶、箱排序。

❼ 面试官常问十大经典算法排序(用Python实现)

算法是一种与语言无关的东西,更确切地说就算解决问题的思路,就是一个通用的思想的问题。代码本身不重要,算法思想才是重中之重

我们在面试的时候总会被问到一下算法,虽然算法是一些基础知识,但是难起来也会让人非常头疼。

排序算法应该算是一些简单且基础的算法,但是我们可以从简单的算法排序锻炼我们的算法思维。这里我就介绍经典十大算法用python是怎么实现的。

十大经典算法可以分为两大类:

比较排序: 通过对数组中的元素进行比较来实现排序。

非比较排序: 不通过比较来决定元素间的相对次序。


算法复杂度

冒泡排序比较简单,几乎所有语言算法都会涉及的冒泡算法。

基本原理是两两比较待排序数据的大小 ,当两个数据的次序不满足顺序条件时即进行交换,反之,则保持不变。

每次选择一个最小(大)的,直到所有元素都被输出。

将第一个元素逐个插入到前面的有序数中,直到插完所有元素为止。

从大范围到小范围进行比较-交换,是插入排序的一种,它是针对直接插入排序算法的改进。先对数据进行预处理,使其基本有序,然后再用直接插入的排序算法排序。

该算法是采用 分治法 对集合进行排序。

把长度为n的输入序列分成两个长度为n/2的子序列,对这两个子序列分别采用归并排序,最终合并成序列。

选取一个基准值,小数在左大数在在右。

利用堆这种数据结构所设计的一种排序算法。

堆是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。利用最大堆和最小堆的特性。

采用字典计数-还原的方法,找出待排序的数组中最大和最小的元素,统计数组中每个值为i的元素出现的次数,对所有的计数累加,将每个元素放在新数组依次排序。

设置一个定量的数组当作空桶;遍历输入数据,并且把数据一个一个放到对应的桶里去;对每个不是空的桶进行排序;从不是空的桶里把排好序的数据拼接起来。

元素分布在桶中:


然后,元素在每个桶中排序:

取得数组中的最大数,并取得位数;从最低位开始取每个位组成新的数组;然后进行计数排序。

上面就是我整理的十大排序算法,希望能帮助大家在算法方面知识的提升。看懂之后可以去试着自己到电脑上运行一遍。最后说一下每个排序是没有调用数据的,大家记得实操的时候要调用。

参考地址:https://www.runoob.com/w3cnote/ten-sorting-algorithm.html

阅读全文

与python算法顺序表题相关的资料

热点内容
dvd光盘存储汉子算法 浏览:757
苹果邮件无法连接服务器地址 浏览:962
phpffmpeg转码 浏览:671
长沙好玩的解压项目 浏览:142
专属学情分析报告是什么app 浏览:564
php工程部署 浏览:833
android全屏透明 浏览:732
阿里云服务器已开通怎么办 浏览:803
光遇为什么登录时服务器已满 浏览:301
PDF分析 浏览:484
h3c光纤全工半全工设置命令 浏览:141
公司法pdf下载 浏览:381
linuxmarkdown 浏览:350
华为手机怎么多选文件夹 浏览:683
如何取消命令方块指令 浏览:349
风翼app为什么进不去了 浏览:778
im4java压缩图片 浏览:362
数据查询网站源码 浏览:150
伊克塞尔文档怎么进行加密 浏览:890
app转账是什么 浏览:163