导航:首页 > 源码编译 > 进程中通信源码

进程中通信源码

发布时间:2023-07-20 15:41:00

‘壹’ linux内核源码在哪

一般在Linux系统中的/usr/src/linux*.*.*(*.*.*代表的是内核版本,如2.4.23)目录下就是内核源代码(如果没有类似目录,是因为还没安装内核代码)。另外还可从互连网上免费下载。注意,不要总到http://www.kernel.org/去下载,最好使用它的镜像站点下载。请在http://www.kernel.org/mirrors/里找一个合适的下载点,再到pub/linux/kernel/v2.6/目录下去下载2.4.23内核。 代码目录结构 在阅读源码之前,还应知道Linux内核源码的整体分布情况。现代的操作系统一般由进程管理、内存管理、文件系统、驱动程序和网络等组成。Linux内核源码的各个目录大致与此相对应,其组成如下(假设相对于Linux-2.4.23目录): 1.arch目录包括了所有和体系结构相关的核心代码。它下面的每一个子目录都代表一种Linux支持的体系结构,例如i386就是Intel CPU及与之相兼容体系结构的子目录。PC机一般都基于此目录。 2.include目录包括编译核心所需要的大部分头文件,例如与平台无关的头文件在include/linux子目录下。 3.init目录包含核心的初始化代码(不是系统的引导代码),有main.c和Version.c两个文件。这是研究核心如何工作的好起点。 4.mm目录包含了所有的内存管理代码。与具体硬件体系结构相关的内存管理代码位于arch/*/mm目录下。 5.drivers目录中是系统中所有的设备驱动程序。它又进一步划分成几类设备驱动,每一种有对应的子目录,如声卡的驱动对应于drivers/sound。 6.ipc目录包含了核心进程间的通信代码。 7.moles目录存放了已建好的、可动态加载的模块。 8.fs目录存放Linux支持的文件系统代码。不同的文件系统有不同的子目录对应,如ext3文件系统对应的就是ext3子目录。 Kernel内核管理的核心代码放在这里。同时与处理器结构相关代码都放在arch/*/kernel目录下。 9.net目录里是核心的网络部分代码,其每个子目录对应于网络的一个方面。 10.lib目录包含了核心的库代码,不过与处理器结构相关的库代码被放在arch/*/lib/目录下。 11.scripts目录包含用于配置核心的脚本文件。 12.documentation目录下是一些文档,是对每个目录作用的具体说明。 一般在每个目录下都有一个.depend文件和一个Makefile文件。这两个文件都是编译时使用的辅助文件。仔细阅读这两个文件对弄清各个文件之间的联系和依托关系很有帮助。另外有的目录下还有Readme文件,它是对该目录下文件的一些说明,同样有利于对内核源码的理解。 在阅读方法或顺序上,有纵向与横向之分。所谓纵向就是顺着程序的执行顺序逐步进行;所谓横向,就是按模块进行。它们经常结合在一起进行。对于Linux启动的代码可顺着Linux的启动顺序一步步来阅读;对于像内存管理部分,可以单独拿出来进行阅读分析。实际上这是一个反复的过程,不可能读一遍就理解。

‘贰’ [Android源码分析] - 异步通信Handler机制

一、问题:在Android启动后会在新进程里创建一个主线程,也叫UI线程( 非线程安全 )这个线程主要负责监听屏幕点击事件与界面绘制。当Application需要进行耗时操作如网络请求等,如直接在主线程进行容易发生ANR错误。所以会创建子线程来执行耗时任务,当子线程执行完毕需要通知UI线程并修改界面时,不可以直接在子线程修改UI,怎么办?

解决方法:Message Queue机制可以实现子线程与UI线程的通信。

该机制包括Handler、Message Queue、Looper。Handler可以把消息/ Runnable对象 发给Looper,由它把消息放入所属线程的消息队列中,然后Looper又会自动把消息队列里的消息/Runnable对象 广播 到所属线程里的Handler,由Handler处理接收到的消息或Runnable对象。

1、Handler

每次创建Handler对象时,它会自动绑定到创建它的线程上。如果是主线程则默认包含一个Message Queue,否则需要自己创建一个消息队列来存储。

Handler是多个线程通信的信使。比如在线程A中创建AHandler,给它绑定一个ALooper,同时创建属于A的消息队列AMessageQueue。然后在线程B中使用AHandler发送消息给ALooper,ALooper会把消息存入到AMessageQueue,然后再把AMessageQueue广播给A线程里的AHandler,它接收到消息会进行处理。从而实现通信。

2、Message Queue

在主线程里默认包含了一个消息队列不需要手动创建。在子线程里,使用Looper.prepare()方法后,会先检查子线程是否已有一个looper对象,如果有则无法创建,因为每个线程只能拥有一个消息队列。没有的话就为子线程创建一个消息队列。

Handler类包含Looper指针和MessageQueue指针,而Looper里包含实际MessageQueue与当前线程指针。

下面分别就UI线程和worker线程讲解handler创建过程:

首先,创建handler时,会自动检查当前线程是否包含looper对象,如果包含,则将handler内的消息队列指向looper内部的消息队列,否则,抛出异常请求执行looper.prepare()方法。

 - 在 UI线程 中,系统自动创建了Looper 对象,所以,直接new一个handler即可使用该机制;

- 在 worker线程 中,如果直接创建handler会抛出运行时异常-即通过查‘线程-value’映射表发现当前线程无looper对象。所以需要先调用Looper.prepare()方法。在prepare方法里,利用ThreadLocal<Looper>对象为当前线程创建一个Looper(利用了一个Values类,即一个Map映射表,专为thread存储value,此处为当前thread存储一个looper对象)。然后继续创建handler, 让handler内部的消息队列指向该looper的消息队列(这个很重要,让handler指向looper里的消息队列,即二者共享同一个消息队列,然后handler向这个消息队列发送消息,looper从这个消息队列获取消息) 。然后looper循环消息队列即可。当获取到message消息,会找出message对象里的target,即原始发送handler,从而回调handler的handleMessage() 方法进行处理。

 - handler与looper共享消息队列 ,所以handler发送消息只要入列,looper直接取消息即可。

 - 线程与looper映射表 :一个线程最多可以映射一个looper对象。通过查表可知当前线程是否包含looper,如果已经包含则不再创建新looper。

5、基于这样的机制是怎样实现线程隔离的,即在线程中通信呢。 

核心在于 每一个线程拥有自己的handler、message queue、looper体系 。而 每个线程的Handler是公开 的。B线程可以调用A线程的handler发送消息到A的共享消息队列去,然后A的looper会自动从共享消息队列取出消息进行处理。反之一样。

二、上面是基于子线程中利用主线程提供的Handler发送消息出去,然后主线程的Looper从消息队列中获取并处理。那么还有另外两种情况:

1、主线程发送消息到子线程中;

采用的方法和前面类似。要在子线程中实例化AHandler并设定处理消息的方法,同时由于子线程没有消息队列和Looper的轮询,所以要加上Looper.prepare(),Looper.loop()分别创建消息队列和开启轮询。然后在主线程中使用该AHandler去发送消息即可。

2、子线程A与子线程B之间的通信。

1、 Handler为什么能够实现不同线程的通信?核心点在哪?

不同线程之间,每个线程拥有自己的Handler、消息队列和Looper。Handler是公共的,线程可以通过使用目标线程的Handler对象来发送消息,这个消息会自动发送到所属线程的消息队列中去,线程自带的Looper对象会不断循环从里面取出消息并把消息发送给Handler,回调自身Handler的handlerMessage方法,从而实现了消息的线程间传递。

2、 Handler的核心是一种事件激活式(类似传递一个中断)的还是主要是用于传递大量数据的?重点在Message的内容,偏向于数据传输还是事件传输。

目前的理解,它所依赖的是消息队列,发送的自然是消息,即类似事件中断。

0、 Android消息处理机制(Handler、Looper、MessageQueue与Message)

1、 Handler、Looper源码阅读

2、 Android异步消息处理机制完全解析,带你从源码的角度彻底理解

谢谢!

wingjay

![](https://avatars0.githubusercontent.com/u/9619875?v=3&s=460)

‘叁’ Android跨进程通信-mmap函数

通过mmap或者内存共享的Linux IPC机制

直接世猛将同一段内存映射到数据发送进程和数据接收进程的用户空间,这样数据发送进程只需要将数据拷贝到共享的内存区域,数据接收进程就可以直接使用数据了。

mmap是一个很重要的函数,它可以实现共享内存,但并不像SystemV和Posix的共享内存存粹的只用于共享内存,桥返饥mmap()的设计,主要是用来做文件的映射的,它提供了我们一种新的访问文件的方案。

mmap函数的使用非常简单,我们来看一下

常规文件操作为了提高读写效率和保护磁盘,使用了 页缓存机制 ,这种机制会造成读文件时需要先将文件页从磁盘拷贝到页缓存中,由于 页缓存处在内核空间 ,不能被用户进程直接寻址,所以还需要 将页缓存中数据页再次拷贝到内存 对应的用户空间中。

常规文件操作为了提高读写效率和保护磁盘,使用了页缓存机制,这种机制会造成读文件时需要先将文件页从磁盘拷贝到页缓存中,由于页缓存处在内核空间,不能被用户进程直接寻址,所以还需要将页缓存中数据页再次拷贝到内存对应的用户空间中。

使用mmap操作文件中,由于不需要经过内核空间的数据缓存,只使用一次数据拷贝,就从磁盘中将数据传入内存的用户空间中,供进程使用

mmap的关键点是实现了用户空间和内核空间的数据直接交互而省去了空间不同数据不通的繁琐过程,因此mmap效率很高。

mmap()使用非常频繁,看过Android系统源码的人,肯定看到过大量的地方使用mmap()函数,比如上面提到的 匿名共享内存的使用就使用到了mmap来映射/dev/ashmem里的文件

这里我再介绍一种mmap()在Android系统上的使用场景, mmap的设计目的就是为了让文件的访问更有效率 ,所以当APK进行安装时,为了更高效的读取APK包里面的文件,同样也用到了mmap函数。

Dalvik在安装应敏返用时,需要加载dex文件,然后进行odex优化处理,优化函数为dvmContinueOptimization,我们看一下他的大致实现。

可以看到,dvmContinueOptimization函数中对dex文件的加载便用了mmap内存映射函数。

‘肆’ java 进程间通讯的有几种方法

进程间通信的方法主要有以下几种:

(1)管道(Pipe):管道可用于具有亲缘关系进程间的通信,允许一个进程和另一个与它有共同祖先的进程之间进行通信。
(2)命名管道(named pipe):命名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允许无亲缘关 系进程间的通信。命名管道在文件系统中有对应的文件名。命名管道通过命令mkfifo或系统调用mkfifo来创建。
(3)信号(Signal):信号是比较复杂的通信方式,用于通知接受进程有某种事件发生,除了用于进程间通信外,进程还可以发送 信号给进程本身;linux除了支持Unix早期信号语义函数sigal外,还支持语义符合Posix.1标准的信号函数sigaction(实际上,该函数是基于BSD的,BSD为了实现可靠信号机制,又能够统一对外接口,用sigaction函数重新实现了signal函数)。
(4)消息(Message)队列:消息队列是消息的链接表,包括Posix消息队列system V消息队列。有足够权限的进程可以向队列中添加消息,被赋予读权限的进程则可以读走队列中的消息。消息队列克服了信号承载信息量少,管道只能承载无格式字节流以及缓冲区大小受限等缺
(5)共享内存:使得多个进程可以访问同一块内存空间,是最快的可用IPC形式。是针对其他通信机制运行效率较低而设计的。往往与其它通信机制,如信号量结合使用,来达到进程间的同步及互斥。
(6)内存映射(mapped memory):内存映射允许任何多个进程间通信,每一个使用该机制的进程通过把一个共享的文件映射到自己的进程地址空间来实现它。
(7)信号量(semaphore):主要作为进程间以及同一进程不同线程之间的同步手段。
(8)套接口(Socket):更为一般的进程间通信机制,可用于不同机器之间的进程间通信。起初是由Unix系统的BSD分支开发出来的,但现在一般可以移植到其它类Unix系统上:Linux和System V的变种都支持套接字。

而在java中我们实现多线程间通信则主要采用"共享变量"和"管道流"这两种方法

方法一 通过访问共享变量的方式(注:需要处理同步问题)
方法二 通过管道流

其中方法一有两种实现方法,即
方法一a)通过内部类实现线程的共享变量
代码如下:

public class Innersharethread {
public static void main(String[] args) {
Mythread mythread = new Mythread();
mythread.getThread().start();
mythread.getThread().start();
mythread.getThread().start();
mythread.getThread().start();
}
}
class Mythread {
int index = 0;
private class InnerThread extends Thread {
public synchronized void run() {
while (true) {
System.out.println(Thread.currentThread().getName()
+ "is running and index is " + index++);
}
}
}
public Thread getThread() {
return new InnerThread();
}
}
/**
* 通过内部类实现线程的共享变量
*
*/
public class Innersharethread {
public static void main(String[] args) {
Mythread mythread = new Mythread();
mythread.getThread().start();
mythread.getThread().start();
mythread.getThread().start();
mythread.getThread().start();
}
}
class Mythread {
int index = 0;
private class InnerThread extends Thread {
public synchronized void run() {
while (true) {
System.out.println(Thread.currentThread().getName()
+ "is running and index is " + index++);
}
}
}
public Thread getThread() {
return new InnerThread();
}
}

b)通过实现Runnable接口实现线程的共享变量
代码如下:

public class Interfacaesharethread {
public static void main(String[] args) {
Mythread mythread = new Mythread();
new Thread(mythread).start();
new Thread(mythread).start();
new Thread(mythread).start();
new Thread(mythread).start();
}
}
/* 实现Runnable接口 */
class Mythread implements Runnable {
int index = 0;
public synchronized void run() {
while (true)
System.out.println(Thread.currentThread().getName() + "is running and
the index is " + index++);
}
}
/**
* 通过实现Runnable接口实现线程的共享变量
*/
public class Interfacaesharethread {
public static void main(String[] args) {
Mythread mythread = new Mythread();
new Thread(mythread).start();
new Thread(mythread).start();
new Thread(mythread).start();
new Thread(mythread).start();
}
}
/* 实现Runnable接口 */
class Mythread implements Runnable {
int index = 0;
public synchronized void run() {
while (true)
System.out.println(Thread.currentThread().getName() + "is running and
the index is " + index++);
}
}

方法二(通过管道流):
代码如下:

public class CommunicateWhitPiping {
public static void main(String[] args) {
/**
* 创建管道输出流
*/
PipedOutputStream pos = new PipedOutputStream();
/**
* 创建管道输入流
*/
PipedInputStream pis = new PipedInputStream();
try {
/**
* 将管道输入流与输出流连接 此过程也可通过重载的构造函数来实现
*/
pos.connect(pis);
} catch (IOException e) {
e.printStackTrace();
}
/**
* 创建生产者线程
*/
Procer p = new Procer(pos);
/**
* 创建消费者线程
*/
Consumer c = new Consumer(pis);
/**
* 启动线程
*/
p.start();
c.start();
}
}
/**
* 生产者线程(与一个管道输入流相关联)
*
*/
class Procer extends Thread {
private PipedOutputStream pos;
public Procer(PipedOutputStream pos) {
this.pos = pos;
}
public void run() {
int i = 8;
try {
pos.write(i);
} catch (IOException e) {
e.printStackTrace();
}
}
}
/**
* 消费者线程(与一个管道输入流相关联)
*
*/
class Consumer extends Thread {
private PipedInputStream pis;
public Consumer(PipedInputStream pis) {
this.pis = pis;
}
public void run() {
try {
System.out.println(pis.read());
} catch (IOException e) {
e.printStackTrace();
}
}
}
阅读全文

与进程中通信源码相关的资料

热点内容
dvd光盘存储汉子算法 浏览:757
苹果邮件无法连接服务器地址 浏览:962
phpffmpeg转码 浏览:671
长沙好玩的解压项目 浏览:142
专属学情分析报告是什么app 浏览:564
php工程部署 浏览:833
android全屏透明 浏览:732
阿里云服务器已开通怎么办 浏览:803
光遇为什么登录时服务器已满 浏览:301
PDF分析 浏览:484
h3c光纤全工半全工设置命令 浏览:141
公司法pdf下载 浏览:381
linuxmarkdown 浏览:350
华为手机怎么多选文件夹 浏览:683
如何取消命令方块指令 浏览:349
风翼app为什么进不去了 浏览:778
im4java压缩图片 浏览:362
数据查询网站源码 浏览:150
伊克塞尔文档怎么进行加密 浏览:890
app转账是什么 浏览:163