导航:首页 > 源码编译 > hive编译源码图

hive编译源码图

发布时间:2023-07-21 12:07:54

㈠ Hive内置函数之时间函数

零、生产埋凳渗常用组合方式

(0.1)离线数仓获取昨天的日期作为分区,格式yyyyMMdd

regexp_replace(date_sub(from_unixtime(unix_timestamp(),'yyyy-MM-dd'),1) ,'-','')

或者

date_format(date_sub(from_unixtime(unix_timestamp(),'yyyy-MM-dd'),1),'yyyyMMdd')

一、源码部分

Hive的函数类为:org.apache.hadoop.hive.ql.exec.FunctionRegistry

二、常用时间函数

对于函数,除了知道怎么用,还需要知道返回值是什么类型,这里给出官方文档,文档中给出了函数的返回值类型

官方文档见: https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-DateFunctions

(2.1)from_unixtime(bigint unixtime[, string format])

示例:

select from_unixtime(1591627588); -- 2020-06-08 22:46:28

select from_unixtime(1591627588,'yyyyMMddHHmmss'); -- 20200608224628

(2.2)unix_timestamp()、弯脊unix_timestamp(string date)、unix_timestamp(string date, string pattern)

示例:

select unix_timestamp('2020-06-08 22:50:00'); -- 1591627800

select unix_timestamp('20200608225000','yyyyMMddHHmmss'); -- 1591627800

(2.3)to_date(string timestamp)

示例:

SELECT to_date('2009-07-30 04:17:52'); -- 2009-07-30

(2.4)year(string date)、month(string date)、day(string date)、hour(string date)、minute(string date)、second(string date)

这些函数是差不多的,都是从一个时间字符串中抽取出某个特定的时间字段。具有相同功能的还有extract(field FROM source)函数

示例:

SELECT day('2009-07-29 20:30:40'); -- 29

SELECT minute('2009-07-29 20:30:40'); -- 30

(2.5)date_add(date/timestamp/string startdate, tinyint/smallint/int days)、date_sub(date/timestamp/string startdate, tinyint/smallint/int days)

这两个功能是类似的

示粗搏例:

SELECT date_add('2009-07-30 20:50:59', 1); -- 2009-07-31

(2.6)datediff(string enddate, string startdate)

截图中结果是错误的,应该为-1。

示例:

SELECT datediff('2009-06-30', '2009-07-02'); -- -2

SELECT datediff('2009-07-30', '2009-07-28'); -- 2

(2.7)current_date、current_timestamp

这两个函数使用desc function extended 查看会报错

示例:

(2.8)date_format(date/timestamp/string ts, string fmt)

示例:

SELECT date_format('2015-04-08', 'yyyyMMdd'); -- 20150408

㈡ 我想学习hive,请问安装hive之前,必须安装centos、hadoop、java这些吗

安装需要
java 1.6,java 1.7或更高版本。
Hadoop 2.x或更高, 1.x. Hive 0.13 版本也支持 0.20.x, 0.23.x
linux,mac,windows操作系统。以下内容适用于linux系统。
安装打包好的hive
需要先到apache下载已打包好的hive镜像,然后解压开该文件
$ tar -xzvf hive-x.y.z.tar.gz

设置hive环境变量
$ cd hive-x.y.z$ export HIVE_HOME={{pwd}}

设置hive运行路径
$ export PATH=$HIVE_HOME/bin:$PATH

编译Hive源码
下载hive源码
此处使用maven编译,需要下载安装maven。

以Hive 0.13版为例
编译hive 0.13源码基于hadoop 0.23或更高版本
$cdhive$mvncleaninstall-Phadoop-2,dist$cdpackaging/target/apache-hive-{version}-SNAPSHOT-bin/apache-hive-{version}-SNAPSHOT-bin$lsLICENSENOTICEREADME.txtRELEASE_NOTES.txtbin/(alltheshellscripts)lib/(requiredjarfiles)conf/(configurationfiles)examples/(sampleinputandqueryfiles)hcatalog/(hcataloginstallation)scripts/(upgradescriptsforhive-metastore)
编译hive 基于hadoop 0.20
$cdhive$antcleanpackage$cdbuild/dist#lsLICENSENOTICEREADME.txtRELEASE_NOTES.txtbin/(alltheshellscripts)lib/(requiredjarfiles)conf/(configurationfiles)examples/(sampleinputandqueryfiles)hcatalog/(hcataloginstallation)scripts/(upgradescriptsforhive-metastore)
运行hive
Hive运行依赖于hadoop,在运行hadoop之前必需先配置好hadoopHome。
export HADOOP_HOME=<hadoop-install-dir>

在hdfs上为hive创建\tmp目录和/user/hive/warehouse(akahive.metastore.warehouse.dir) 目录,然后你才可以运行hive。
在运行hive之前设置HiveHome。
$ export HIVE_HOME=<hive-install-dir>

命令行窗口启动hive
$ $HIVE_HOME/bin/hive

若执行成功,将看到类似内容如图所示

㈢ org.apahce.hadoop.hive.ql.exec.udf 在哪个包里

你说的应该是hive的udf吧?
udf的源码如下:
package org.apache.hadoop.hive.ql.exec;

import org.apache.hadoop.hive.ql.udf.UDFType;

@UDFType(
deterministic = true
)
public class UDF {
private UDFMethodResolver rslv;
// 后面省略
可以看到,类UDF在包org.apache.hadoop.hive.ql.exec下,如果要使用hive的udf,需要用到以下依赖:
我用的是maven pom, pom依赖如下:
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-exec</artifactId>
<version>2.1.0</version>
</dependency>

㈣ 如何快速地编写和运行一个属于自己的MapRece例子程序

大数据的时代, 到处张嘴闭嘴都是Hadoop, MapRece, 不跟上时代怎么行? 可是对一个hadoop的新手, 写一个属于自己的MapRece程序还是小有点难度的, 需要建立一个maven项目, 还要搞清楚各种库的依赖, 再加上编译运行, 基本上头大两圈了吧。 这也使得很多只是想简单了解一下MapRece的人望而却步。
本文会教你如何用最快最简单的方法编写和运行一个属于自己的MapRece程序, let's go!
首先有两个前提:
1. 有一个已经可以运行的hadoop 集群(也可以是伪分布系统), 上面的hdfs和maprece工作正常 (这个真的是最基本的了, 不再累述, 不会的请参考 http://hadoop.apache.org/docs/current/)
2. 集群上安装了JDK (编译运行时会用到)
正式开始
1. 首先登入hadoop 集群里面的一个节点, 创建一个java源文件, 偷懒起见, 基本盗用官方的word count (因为本文的目的是教会你如何快编写和运行一个MapRece程序, 而不是如何写好一个功能齐全的MapRece程序)
内容如下:
import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.maprece.Job;
import org.apache.hadoop.maprece.Mapper;
import org.apache.hadoop.maprece.Recer;
import org.apache.hadoop.maprece.lib.input.FileInputFormat;
import org.apache.hadoop.maprece.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class myword {

public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}

public static class IntSumRecer
extends Recer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();

public void rece(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}

public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println('Usage: wordcount <in> <out>');
System.exit(2);
}
Job job = new Job(conf, 'word count');
job.setJarByClass(myword.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumRecer.class);
job.setRecerClass(IntSumRecer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

与官方版本相比, 主要做了两处修改
1) 为了简单起见,去掉了开头的 package org.apache.hadoop.examples;
2) 将类名从 WordCount 改为 myword, 以体现是我们自己的工作成果 :)
2. 拿到hadoop 运行的class path, 主要为编译所用
运行命令
hadoop classpath

保存打出的结果,本文用的hadoop 版本是Pivotal 公司的Pivotal hadoop, 例子:
/etc/gphd/hadoop/conf:/usr/lib/gphd/hadoop/lib/*:/usr/lib/gphd/hadoop/.//*:/usr/lib/gphd/hadoop-hdfs/./:/usr/lib/gphd/hadoop-hdfs/lib/*:/usr/lib/gphd/hadoop-hdfs/.//*:/usr/lib/gphd/hadoop-yarn/lib/*:/usr/lib/gphd/hadoop-yarn/.//*:/usr/lib/gphd/hadoop-maprece/lib/*:/usr/lib/gphd/hadoop-maprece/.//*::/etc/gphd/pxf/conf::/usr/lib/gphd/pxf/pxf-core.jar:/usr/lib/gphd/pxf/pxf-api.jar:/usr/lib/gphd/publicstage:/usr/lib/gphd/gfxd/lib/gemfirexd.jar::/usr/lib/gphd/zookeeper/zookeeper.jar:/usr/lib/gphd/hbase/lib/hbase-common.jar:/usr/lib/gphd/hbase/lib/hbase-protocol.jar:/usr/lib/gphd/hbase/lib/hbase-client.jar:/usr/lib/gphd/hbase/lib/hbase-thrift.jar:/usr/lib/gphd/hbase/lib/htrace-core-2.01.jar:/etc/gphd/hbase/conf::/usr/lib/gphd/hive/lib/hive-service.jar:/usr/lib/gphd/hive/lib/libthrift-0.9.0.jar:/usr/lib/gphd/hive/lib/hive-metastore.jar:/usr/lib/gphd/hive/lib/libfb303-0.9.0.jar:/usr/lib/gphd/hive/lib/hive-common.jar:/usr/lib/gphd/hive/lib/hive-exec.jar:/usr/lib/gphd/hive/lib/postgresql-jdbc.jar:/etc/gphd/hive/conf::/usr/lib/gphd/sm-plugins/*:

3. 编译
运行命令
javac -classpath xxx ./myword.java

xxx部分就是上一步里面取到的class path
运行完此命令后, 当前目录下会生成一些.class 文件, 例如:
myword.class myword$IntSumRecer.class myword$TokenizerMapper.class
4. 将class文件打包成.jar文件
运行命令
jar -cvf myword.jar ./*.class

至此, 目标jar 文件成功生成
5. 准备一些文本文件, 上传到hdfs, 以做word count的input
例子:
随意创建一些文本文件, 保存到mapred_test 文件夹
运行命令
hadoop fs -put ./mapred_test/

确保此文件夹成功上传到hdfs 当前用户根目录下
6. 运行我们的程序
运行命令
hadoop jar ./myword.jar myword mapred_test output

顺利的话, 此命令会正常进行, 一个MapRece job 会开始工作, 输出的结果会保存在 hdfs 当前用户根目录下的output 文件夹里面。
至此大功告成!
如果还需要更多的功能, 我们可以修改前面的源文件以达到一个真正有用的MapRece job。
但是原理大同小异, 练手的话, 基本够了。
一个抛砖引玉的简单例子, 欢迎板砖。
转载

㈤ hive的Hive 体系结构

主要分为以下几个部分:
用户接口
用户接口主要有三个:CLI,Client 和 WUI。其中最常用的是 CLI,Cli 启动的时候,会同时启动一个 Hive 副本。Client 是 Hive 的客户端,用户连接至 Hive Server。在启动 Client 模式的时候,需要指出 Hive Server 所在节点,并且在该节点启动 Hive Server。 WUI 是通过浏览器访问 Hive。
元数据存储
Hive 将元数据存储在数据库中,如 mysql、derby。Hive 中的元数据包括表的名字,表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等。
解释器、编译器、优化器、执行器
解释器、编译器、优化器完成 HQL 查询语句从词法分析、语法分析、编译、优化以及查询计划的生成。生成的查询计划存储在 HDFS 中,并在随后由 MapRece 调用执行。
Hadoop
Hive 的数据存储在 HDFS 中,大部分的查询由 MapRece 完成(包含 * 的查询,比如 select * from tbl 不会生成 MapRece 任务)。

㈥ Hive优化之Hive的配置参数优化

Hive是大数据领域常用的组件之一,主要用于大数据离线数仓的运算,关于Hive的性能调优在日常工作和面试中是经常涉及的一个点,因此掌握一些Hive调优是必不可少的一项技能。影响Hive效率的主要因素有数据倾斜、数据冗余、job的IO以及不同底层引擎配置情况和Hive本身参数和HiveSQL的执行等。本文主要从建表配置参数方面对Hive优化进行讲解。

1. 创建一个普通表

table test_user1(id int, name string,code string,code_id string ) ROW FORMAT DELIMITED FIELDS TERMINATED  BY ',';

2. 查看这张表的信息

DESCRIBE FORMATTED  test_user1;

我们从该表的描述信息介绍建表时的一些可优化点。

2.1 表的文件数

numFiles表示表中含有的文件数,当文件数过多时可能意味着该表的小文件过多,这时候我们可以针对小文件的问题进行一些优化,HDFS本身提供了解决方案:

(1)Hadoop Archive/HAR:将小文件打包成大文件。

(2)SEQUENCEFILE格式:将大量小文件压缩成一个SEQUENCEFILE文件。

(3)CombineFileInputFormat:在map和rece处理之前组合小文件。

(4)HDFS Federation:HDFS联盟,使用多个namenode节点管理文件。

除此之外,我们还可以通过设置hive的参数来合并小文件。

(1)输入阶段合并

需要更改Hive的输入文件格式,即参数hive.input.format,默认值是org.apache.hadoop.hive.ql.io.HiveInputFormat,我们改成org.apache.hadoop.hive.ql.io.CombineHiveInputFormat。这样比起上面对mapper数的调整,会多出两个参数,分别是mapred.min.split.size.per.node和mapred.min.split.size.per.rack,含义是单节点和单机架上的最小split大小。如果发现有split大小小于这两个值(默认都是100MB),则会进行合并。具体逻辑可以参看Hive源码中的对应类。

(2)输出阶段合并

直接将hive.merge.mapfiles和hive.merge.mapredfiles都设为true即可,前者表示将map-only任务的输出合并,后者表示将map-rece任务的输出合并,Hive会额外启动一个mr作业将输出的小文件合并成大文件。另外,hive.merge.size.per.task可以指定每个task输出后合并文件大小的期望值,hive.merge.size.smallfiles.avgsize可以指定所有输出文件大小的均值阈值,默认值都是1GB。如果平均大小不足的话,就会另外启动一个任务来进行合并。

2.2 表的存储格式

通过InputFormat和OutputFormat可以看出表的存储格式是TEXT类型,Hive支持TEXTFILE, SEQUENCEFILE, AVRO, RCFILE, ORC,以及PARQUET文件格式,可以通过两种方式指定表的文件格式:

(1)CREATE TABLE ... STORE AS <file_format>:在建表时指定文件格式,默认是TEXTFILE

(2)ALTER TABLE ... [PARTITION partition_spec] SET FILEFORMAT <file_format>:修改具体表的文件格式

如果要改变创建表的默认文件格式,可以使用set

hive.default.fileformat=<file_format>进行配置,适用于所有表。同时也可以使用set

hive.default.fileformat.managed = <file_format>进行配置,仅适用于内部表或外部表。

扩展:不同存储方式的情况

TEXT,

SEQUENCE和

AVRO文件是面向行的文件存储格式,不是最佳的文件格式,因为即便只查询一列数据,使用这些存储格式的表也需要读取完整的一行数据。另一方面,面向列的存储格式(RCFILE,

ORC, PARQUET)可以很好地解决上面的问题。关于每种文件格式的说明,如下:

(1)TEXTFILE

创建表时的默认文件格式,数据被存储成文本格式。文本文件可以被分割和并行处理,也可以使用压缩,比如GZip、LZO或者Snappy。然而大部分的压缩文件不支持分割和并行处理,会造成一个作业只有一个mapper去处理数据,使用压缩的文本文件要确保文件不要过大,一般接近两个HDFS块的大小。

(2)SEQUENCEFILE

key/value对的二进制存储格式,sequence文件的优势是比文本格式更好压缩,sequence文件可以被压缩成块级别的记录,块级别的压缩是一个很好的压缩比例。如果使用块压缩,需要使用下面的配置:set

hive.exec.compress.output=true; set io.seqfile.compression.type=BLOCK

(3)AVRO

二进制格式文件,除此之外,avro也是一个序列化和反序列化的框架。avro提供了具体的数据schema。

(4)RCFILE

全称是Record Columnar File,首先将表分为几个行组,对每个行组内的数据进行按列存储,每一列的数据都是分开存储,即先水平划分,再垂直划分。

(5)ORC

全称是Optimized Row Columnar,从hive0.11版本开始支持,ORC格式是RCFILE格式的一种优化的格式,提供了更大的默认块(256M)

(6)PARQUET

另外一种列式存储的文件格式,与ORC非常类似,与ORC相比,Parquet格式支持的生态更广,比如低版本的impala不支持ORC格式。

配置同样数据同样字段的两张表,以常见的TEXT行存储和ORC列存储两种存储方式为例,对比执行速度。

TEXT存储方式

总结: 从上图中可以看出列存储在对指定列进行查询时,速度更快, 建议在建表时设置列存储的存储方式 。

2.3 表的压缩

对Hive表进行压缩是常见的优化手段,一些存储方式自带压缩选择,比如SEQUENCEFILE支持三种压缩选择:NONE,RECORD,BLOCK。Record压缩率低,一般建议使用BLOCK压缩;

ORC支持三种压缩选择:NONE,ZLIB,SNAPPY。我们以TEXT存储方式和ORC存储方式为例,查看表的压缩情况。

配置同样数据同样字段的四张表,一张TEXT存储方式,另外三张分别是默认压缩方式的ORC存储、SNAPPY压缩方式的ORC存储和NONE压缩方式的ORC存储,查看在hdfs上的存储情况:

TEXT存储方式

默认压缩ORC存储方式

SNAPPY压缩的ORC存储方式

NONE压缩的ORC存储方式

总结 :可以看到ORC存储方式将数据存放为两个block,默认压缩大小加起来134.69M,SNAPPY压缩大小加起来196.67M,NONE压缩大小加起来247.55M,TEXT存储方式的文件大小为366.58M,且默认block两种存储方式分别为256M和128M,ORC默认的压缩方式比SNAPPY压缩得到的文件还小,原因是ORZ默认的ZLIB压缩方式采用的是deflate压缩算法,比Snappy压缩算法得到的压缩比高,压缩的文件更小。 ORC不同压缩方式之间的执行速度,经过多次测试发现三种压缩方式的执行速度差不多,所以建议采用ORC默认的存储方式进行存储数据。

2.4 分桶分区

Num Buckets表示桶的数量,我们可以通过分桶和分区操作对Hive表进行优化:

对于一张较大的表,可以将它设计成分区表,如果不设置成分区表,数据是全盘扫描的,设置成分区表后,查询时只在指定的分区中进行数据扫描,提升查询效率。要注意尽量避免多级分区,一般二级分区足够使用。常见的分区字段:

(1)日期或者时间,比如year、month、day或者hour,当表中存在时间或者日期字段时,可以使用些字段。

(2)地理位置,比如国家、省份、城市等

(3)业务逻辑,比如部门、销售区域、客户等等

与分区表类似,分桶表的组织方式是将HDFS上的一张大表文件分割成多个文件。分桶是相对分区进行更细粒度的划分,分桶将整个数据内容按照分桶字段属性值得hash值进行区分,分桶可以加快数据采样,也可以提升join的性能(join的字段是分桶字段),因为分桶可以确保某个key对应的数据在一个特定的桶内(文件),所以巧妙地选择分桶字段可以大幅度提升join的性能。通常情况下,分桶字段可以选择经常用在过滤操作或者join操作的字段。

创建分桶表

create

table test_user_bucket(id int, name string,code string,code_id string )

clustered by(id) into 3 buckets ROW FORMAT DELIMITED FIELDS TERMINATED 

BY ',';

查看描述信息

DESCRIBE FORMATTED test_user_bucket

多出了如下信息

查看该表的hdfs

同样的数据查看普通表和分桶表查询效率

普通表

分桶表

普通表是全表扫描,分桶表在按照分桶字段的hash值分桶后,根据join字段或者where过滤字段在特定的桶中进行扫描,效率提升。

本文首发于: 数栈研习社

数栈是云原生—站式数据中台PaaS,我们在github上有一个有趣的开源项目: FlinkX

FlinkX是一个基于Flink的批流统一的数据同步工具,既可以采集静态的数据,比如MySQL,HDFS等,也可以采集实时变化的数据,比如MySQL

binlog,Kafka等,是全域、异构、批流一体的数据同步引擎,大家如果有兴趣,欢迎来github社区找我们玩~

㈦ 源码级解读如何解决Spark-sql读取hive分区表执行效率低问题

问题描述

在开发过程中使用spark去读取hive分区表的过程中(或者使用hive on spark、nodepad开发工具),部分开发人员未注意添加分区属性过滤导致在执行过程中加载了全量数据,引起任务执行效率低、首腊磁盘IO大量禅芹键损耗等问题。

解决办法

1、自定义规则CheckPartitionTable类,实现Rule,通过以下方式创建SparkSession。

2、自定义规则CheckPartitionTable类,实现Rule,将规则类追加至Optimizer.batches: Seq[Batch]中,如下。

规则内容实现

1、CheckPartitionTable规则执行类,需要通过引入sparkSession从而获取到引入conf;需要继承Rule[LogicalPlan];

2、通过splitPredicates方法,分离分区谓词,得到分区贺巧谓词表达式。在sql解析过程中将谓词解析为TreeNode,此处采用递归的方式获取分区谓词。

3、判断是否是分区表,且是否添加分区字段。

4、实现Rule的apply方法

大数据和云计算的关系

大数据JUC面试题

大数据之Kafka集群部署

大数据logstsh架构

大数据技术kafka的零拷贝

阅读全文

与hive编译源码图相关的资料

热点内容
dvd光盘存储汉子算法 浏览:757
苹果邮件无法连接服务器地址 浏览:962
phpffmpeg转码 浏览:671
长沙好玩的解压项目 浏览:142
专属学情分析报告是什么app 浏览:564
php工程部署 浏览:833
android全屏透明 浏览:732
阿里云服务器已开通怎么办 浏览:803
光遇为什么登录时服务器已满 浏览:301
PDF分析 浏览:484
h3c光纤全工半全工设置命令 浏览:141
公司法pdf下载 浏览:381
linuxmarkdown 浏览:350
华为手机怎么多选文件夹 浏览:683
如何取消命令方块指令 浏览:349
风翼app为什么进不去了 浏览:778
im4java压缩图片 浏览:362
数据查询网站源码 浏览:150
伊克塞尔文档怎么进行加密 浏览:890
app转账是什么 浏览:163