导航:首页 > 源码编译 > 算法dfs例题

算法dfs例题

发布时间:2023-07-23 19:47:19

Ⅰ 图遍历算法之DFS/BFS

在计算机科学, 图遍历(Tree Traversal,也称图搜索)是一系列图搜索的算法, 是单次访问树结构类型数据(tree data structure)中每个节点以便检查或更新的一系列机制。图遍历算法可以按照节点访问顺序进行分类,根据访问目的或使用场景的不同,算法大致可分为28种:

图遍历即以特定方式访问图中所有节点,给定节点下有多种可能的搜索路径。假定以顺序方式进行(非并行),还未访问的节点就需通过堆栈(LIFO)或队列(FIFO)规则来确定访问先后。由于树结构是一种递归的数据结构,在清晰的定义下,未访问节点可存储在调用堆栈中。本文介绍了图遍历领域最流行的广度优先搜索算法BFS和深度优先搜索算法DFS,对其原理、应用及实现进行了阐述。通常意义上而言,深度优先搜索(DFS)通过递归调用堆栈比较容易实现,广义优先搜索通过队列实现。

深度优先搜索(DFS)是用于遍历或搜索图数据结构的算法,该算法从根节点开始(图搜索时可选择任意节点作为根节点)沿着每个分支进行搜索,分支搜索结束后在进行回溯。在进入下一节点之前,树的搜索尽可能的加深。
DFS的搜索算法如下(以二叉树为例):假定根节点(图的任意节点可作为根节点)标记为 ,
(L) : 递归遍历左子树,并在节点 结束。
(R): 递归遍历右子树,并在节点 结束。
(N): 访问节点 。
这些步骤可以以任意次序排列。如果(L)在(R)之前,则该过程称为从左到右的遍历;反之,则称为从右到左的遍历。根据访问次序的不同,深度优先搜索可分为 pre-order、in-order、out-order以及post-order遍历方式。

(a)检查当前节点是否为空;
(b)展示根节点或当前节点数据;
(c)递归调用pre-order函数遍历左子树;
(d)递归调用pre-order函数遍历右子树。
pre-order遍历属于拓扑排序后的遍历,父节点总是在任何子节点之前被访问。该遍历方式的图示如下:

遍历次序依次为:F -B -A-D- C-E-G- I-H.

(a)检查当前节点是否为空;
(b)递归调用in-order函数遍历左子树;
(c)展示根节点或当前节点数据;
(d)递归调用in-order函数遍历右子树。
在二叉树搜索中,in-order遍历以排序顺序访问节点数据。该遍历方式的图示如下:

遍历次序依次为:A -B - C - D - E - F - G -H-I

(a)检查当前节点是否为空;
(b)递归调用out-order函数遍历右子树;
(c)展示根节点或当前节点数据;
(d)递归调用out-order函数遍历左子树。
该遍历方式与LNR类似,但先遍历右子树后遍历左子树。仍然以图2为例,遍历次序依次为:H- I-G- F- B- E- D- C- A.

(a)检查当前节点是否为空;
(b)递归调用post-order函数遍历左子树;
(c)递归调用post-order函数遍历右子树;
(d)展示根节点或当前节点数据。
post-order遍历图示如下:

遍历次序依次为:A-C-E-D-B-H-I-G-F.

pre-order遍历方式使用场景:用于创建树或图的副本;
in-order遍历使用场景:二叉树遍历;
post-order遍历使用场景:删除树

遍历追踪也称树的序列化,是所访问根节点列表。无论是pre-order,in-order或是post-order都无法完整的描述树特性。给定含有不同元素的树结构,pre-order或post-order与in-order遍历方式结合起来使用才可以描述树的独特性。

树或图形的访问也可以按照节点所处的级别进行遍历。在每次访问下一层级节点之前,遍历所在高层级的所有节点。BFS从根节点(图的任意节点可作为根节点)出发,在移动到下一节点之前访问所有相同深度水平的相邻节点。

BFS的遍历方法图示如下:

遍历次序依次为: F-B-G-A-D-I-C-E-H.

图算法相关的R包为igraph,主要包括图的生成、图计算等一系列算法的实现。

使用方法:

参数说明:

示例:

结果展示:

DFS R输出节点排序:

使用方法:

参数含义同dfs
示例:

结果展示:

BFS R输出节点排序:

以寻找两点之间的路径为例,分别展示BFS及DFS的实现。图示例如下:

示例:

输出结果:

示例:

输出结果:

[1] 维基网络: https://en.wikipedia.org/wiki/Tree_traversal
[2] GeeksforGeeks: https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/
[3] http://webdocs.cs.ualberta.ca/~holte/T26/tree-traversal.html
[4]Martin Broadhurst, Graph Algorithm: http://www.martinbroadhurst.com/Graph-algorithms.html#section_1_1
[5]igraph: https://igraph.org/r/doc/dfs.html
[6]igraph: https://igraph.org/r/doc/bfs.html
[7] Depth-First Search and Breadth-First Search in python: https://eddmann.com/posts/depth-first-search-and-breadth-first-search-in-python/

Ⅱ DFS(深搜)算法

深度优先搜索算法(Depth-First-Search) :是一种用于遍历或搜索树或图的算法。 沿着树的深度遍历树的节点,尽可能深的搜索树的分支。当节点v的所在边都己被探寻过或者在搜寻时结点不满足条件,搜索将回溯到发现节点v的那条边的起始节点。整个进程反复进行直到所有节点都被访问为止。

话说大诗人李白,一生好饮。幸好他从不开车。

一天,他提着酒壶,从家里出来,酒壶中有酒2斗。他边走边唱:

无事街上走,提壶去打酒。
逢店加一倍,遇花喝一斗。

这一路上,他一共遇到店5次,遇到花10次,已知最后一次遇到的是花,他正好把酒喝光了。

请你计算李白遇到店和花的次序,可以把遇店记为a,遇花记为b。则:babaabbabbabbbb 就是合理的次序。像这样的答案一共有多少呢?请你计算出所有可能方案的个数(包含题目给出的)。

注意:通过浏览器提交答案。答案是个整数。不要书写任何多余的内容。

答案:14

小明刚刚看完电影《第39级台阶》,离开电影院的时候,他数了数礼堂前的台阶数,恰好是39级!
站在台阶前,他突然又想着一个问题:
如果我每一步只能迈上1个或2个台阶。先迈左脚,然后左右交替,最后一步是迈右脚,也就是说一共要走偶数步。那么,上完39级台阶,有多少种不同的上法呢?
请你利用计算机的优势,帮助小明寻找答案。

要求提交的是一个整数。
注意:不要提交解答过程,或其它的辅助说明文字。

Ⅲ c++DFS算法问题。

这个题是比较基本的DFS问题,建议你自己多看多试一下,自己做出来意义更大一点。我想提供给你另外一种思路,时间复杂度更低,对于每个坐标(X,Y)可以从(x-1,y)和(x,y-1)到达,所以到这一点的可能数就是到达两个先驱点的方案数量的和,把黑洞设置成0就行了

Ⅳ 数据结构C语言版 图的遍历 DFS和BFS算法,用邻接矩阵储存 急阿在线等 求大神指点

#include <iostream>
#include<string.h>
#include<stack>
#include<queue>
const int Max=100;
const int VISITED=101010;
const int UNVISITED=111111;
const int AFFINITY=101010;
const int INFINITY=111111;
using namespace std;
class Edge
{
public:
int start;
int end;
int weight;

Edge(int st=0,int en=0,int w=0):start(st),end(en),weight(w){}
bool operator>(Edge oneEdge){return weight>oneEdge.weight?true:false;}
bool operator<(Edge oneEdge){return weight<oneEdge.weight?true:false;}
bool operator!=(Edge oneEdge)
{
if(weight!=oneEdge.weight||start!=oneEdge.start||end!=oneEdge.end)
return true;
return false;
}

};

class AdjGraf
{
private:
int verticesNum;
int edgeNum;

int **matrix;

int *Mark;
public:

AdjGraf(int vert)
{
int i=0,j=0;
verticesNum=vert;
matrix=(int**)new int*[vert];
for(i=0;i<vert;i++)
matrix[i]=new int[vert];

Mark=new int[vert];
for(i=0;i<vert;i++)
for(j=0;j<vert;j++)
{
matrix[i][j]=0;

}
for( int m=0;m<verticesNum;m++)

Mark[m]=UNVISITED;

}

~AdjGraf();
//返回与顶点oneVertex相关联的第一条边
Edge FirstEdge(int oneVertex);
//返回与边PreEdge有相同关联顶点oneVertex的下一条边
Edge NextEdge( Edge preEdge);

//添加一条边
void setEdge(int fromVertex,int toVertex,int weight);
//删一条边
void delEdge(int fromVertex,int toVertex);
//如果oneEdge是边则返回TRUE,否则返回FALSE
bool IsEdge( Edge oneEdge)
{
if(oneEdge.start>=0&&oneEdge.start<verticesNum&&
oneEdge.end>=0&&oneEdge.end<verticesNum)
return true;
else return false;
}
//返回边oneEdge的始点
int FromVertex(Edge oneEdge){return oneEdge.start;}
//返回边oneEdge的终点
int ToVertex(Edge oneEdge){return oneEdge.end;}
//返回边oneEdge的权
int Weight(Edge oneEdge){return oneEdge.weight;}
void visit(int i){cout<<i+1<<" ";}
void BFS(int i=1);
void DFS(int i);
void DFSTraverse(int v);
void DFSNoReverse(int f=1);

Edge UNVISITEDEdge(int f);
};

AdjGraf::~AdjGraf()
{
for(int i=0;i<verticesNum;i++)
delete[]matrix[i];
delete[]matrix;
}

Edge AdjGraf::FirstEdge(int oneVertex)
{ int i;
Edge tempEdge;
tempEdge.start=oneVertex;
for( i=0;i<verticesNum;i++)
if(matrix[oneVertex][i]!=0)
break;
tempEdge.end=i;
tempEdge.weight=matrix[oneVertex][i];
return tempEdge;
}

Edge AdjGraf ::NextEdge( Edge preEdge)
{
Edge tempEdge;
tempEdge.start=preEdge.start;
int i=0;
for(i=preEdge.end+1;i<verticesNum;i++)
if(matrix[preEdge.start][i]!=0)
break;
tempEdge.end=i;
tempEdge.weight=matrix[preEdge.start][i];

return tempEdge;

}

void AdjGraf::setEdge(int fromVertex,int toVertex,int weight)
{
if(matrix[fromVertex-1][toVertex-1]==0)

edgeNum++;
matrix[fromVertex-1][toVertex-1]=weight;

}

void AdjGraf::delEdge(int fromVertex,int toVertex)
{
if(matrix[fromVertex][toVertex]==0)
edgeNum--;
matrix[fromVertex][toVertex]=0;

}
/*************递归实现深度优先****************/
void AdjGraf::DFS(int i)
{

visit(i);
Mark[i]=VISITED;
for(Edge e=FirstEdge(i);IsEdge(e);e=NextEdge(e))
if(Mark[ToVertex(e)] == UNVISITED)
DFS(ToVertex(e));

}
void AdjGraf::DFSTraverse(int v)
{
v--;
int i;
for(i=0;i<verticesNum;i++)
Mark[i]=UNVISITED;
for(i=v;i<v+verticesNum;i++)
if (Mark[i]== UNVISITED)
DFS(i);
}

Edge AdjGraf::UNVISITEDEdge(int f)
{ int i;

for( Edge e=FirstEdge(f);IsEdge(e);e=NextEdge(e))
if(Mark[e.end]==UNVISITED)
return e;

return Edge(verticesNum,verticesNum,0) ;

}
/*************非递归实现深度优先**************/
void AdjGraf::DFSNoReverse(int f)
{
f--;
int i,counter=0,j,flag;
stack<int>Temp;
for(i=0;i<verticesNum;i++)
Mark[i]=UNVISITED;
flag=f;
while(counter<12)
{

while(flag!=verticesNum&&IsEdge(UNVISITEDEdge(flag))||!Temp.empty())
{
// Edge tempEdge=UNVISITEDEdge(j);
while(flag!=verticesNum&&Mark[flag]==UNVISITED)
{

visit(flag);
Mark[flag]=VISITED;
Temp.push(flag);
flag=UNVISITEDEdge(flag).end;
}

if(!Temp.empty())
{

flag=UNVISITEDEdge(Temp.top()).end;
Temp.pop();
}

}

if(Mark[counter]==UNVISITED) flag=counter;
else counter++;
}
}

/*************非递归实现广度优先**************/
void AdjGraf::BFS(int v)
{
int i;
v--;
for( i=0;i<verticesNum;i++)
Mark[i]=UNVISITED;

queue<int>tempqueue;
i=0;
/*********v先从指定位置开始,然后从v=0,1,2......
依次检查是否有孤立结点*****************/
while(i<verticesNum)
{
tempqueue.push(v);
while(!tempqueue.empty())
{
v=tempqueue.front();
tempqueue.pop();
if(Mark[v]==UNVISITED)
{
visit(v);
Mark[v]=VISITED;

for(Edge e=FirstEdge(v);IsEdge(e);e=NextEdge(e))
{
v=ToVertex(e);
tempqueue.push(v);

}

}

}
/***********防止出现孤立点****************/
if(Mark[i]==VISITED) i++;
else v=i;
}

}

int main()
{
AdjGraf Graph(12);
Graph.setEdge(1,2,1);
Graph.setEdge(2,1,1);
Graph.setEdge(1,3,5);
Graph.setEdge(3,1,5);/** V1 V12 V11 */
Graph.setEdge(2,4,3);/** / \ / \ */
Graph.setEdge(4,2,3);/** v2 v3 V10 V9 */
Graph.setEdge(2,5,7);/** / \ / \ */
Graph.setEdge(5,2,7);/** v4 v5 v6-v7 */
Graph.setEdge(4,8,4);/** \ / */
Graph.setEdge(8,4,4);/** v8 */
Graph.setEdge(5,8,3);
Graph.setEdge(8,5,3);
Graph.setEdge(3,6,2);
Graph.setEdge(6,3,2);
Graph.setEdge(3,7,1);
Graph.setEdge(7,3,1);
Graph.setEdge(6,7,6);
Graph.setEdge(7,6,6);
Graph.setEdge(12,9,6);
Graph.setEdge(9,12,6);
Graph.setEdge(12,10,6);
Graph.setEdge(10,12,6);
Graph.setEdge(11,11,6);
cout<<"DFSTraverse:"<<endl;
Graph.DFSTraverse(3);
cout<<endl;
cout<<"DFSNoReverse:"<<endl;
Graph.DFSNoReverse(3);
cout<<endl;
cout<<"BFS:"<<endl;
Graph.BFS(3);
cout<<endl;

return 0;

}

以上代码运行环境codeblocks 程序采用DFS递归算法 DFS非递归算法 BFS非递归算法
望采纳~

Ⅳ 基本算法——深度优先搜索(DFS)和广度优先搜索(BFS)

        深度优先搜索和广度优先搜索,都是图形搜索算法,它两相似,又却不同,在应用上也被用到不同的地方。这里拿一起讨论,方便比较。

一、深度优先搜索

        深度优先搜索属于图算法的一种,是一个针对图和树的遍历算法,英文缩写为DFS即Depth First Search。深度优先搜索是图论中的经典算法,利用深度优先搜索算法可以产生目标图的相应拓扑排序表,利用拓扑排序表可以方便的解决很多相关的图论问题,如最大路径问题等等。一般用堆数据结构来辅助实现DFS算法。其过程简要来说是对每一个可能的分支路径深入到不能再深入为止,而且每个节点只能访问一次。

基本步奏

(1)对于下面的树而言,DFS方法首先从根节点1开始,其搜索节点顺序是1,2,3,4,5,6,7,8(假定左分枝和右分枝中优先选择左分枝)。

(2)从stack中访问栈顶的点;

(3)找出与此点邻接的且尚未遍历的点,进行标记,然后放入stack中,依次进行;

(4)如果此点没有尚未遍历的邻接点,则将此点从stack中弹出,再按照(3)依次进行;

(5)直到遍历完整个树,stack里的元素都将弹出,最后栈为空,DFS遍历完成。

二、广度优先搜索

        广度优先搜索(也称宽度优先搜索,缩写BFS,以下采用广度来描述)是连通图的一种遍历算法这一算法也是很多重要的图的算法的原型。Dijkstra单源最短路径算法和Prim最小生成树算法都采用了和宽度优先搜索类似的思想。其别名又叫BFS,属于一种盲目搜寻法,目的是系统地展开并检查图中的所有节点,以找寻结果。换句话说,它并不考虑结果的可能位置,彻底地搜索整张图,直到找到结果为止。基本过程,BFS是从根节点开始,沿着树(图)的宽度遍历树(图)的节点。如果所有节点均被访问,则算法中止。一般用队列数据结构来辅助实现BFS算法。

基本步奏

(1)给出一连通图,如图,初始化全是白色(未访问);

(2)搜索起点V1(灰色);

(3)已搜索V1(黑色),即将搜索V2,V3,V4(标灰);

(4)对V2,V3,V4重复以上操作;

(5)直到终点V7被染灰,终止;

(6)最短路径为V1,V4,V7.

Ⅵ 求有权无向图的DFS算法

深度优先遍历类似于树的先序遍历,俗称一条路走到黑,然后再考虑回溯的问题,回溯到最近访问的顶点并看它是否还有相邻顶点未访问,若无继续往前回溯。

我下面写写核心伪代码,其他诸如图的类型定义、还有你要对每个结点做的具体操作(我在代码中用visit()函数来代替了,具体做啥操作根据题目来)我就不写了。
bool visited[MSX_VERTEX_NUM]; //标记访问数组
void DFS_Traverse(Grath G) //对图G进行DFS
{
for(v=0;v<G.vexnum;++v)

{
visited[v]=false; //初始化已访问标记数据

}
for(v=0;v<G.vexnum;++v) //假设从v=0开始遍历

{
if(!visited[v])

DFS(G,v);

}

}
void DFS(Graph G,int v) //从顶点v出发,用递归的思想,深度优先遍历
{
visit(v); //这里的visit()就是对顶点v的具体操作,题目是啥就自己写啥

visited[v]=true; //标记已访问

for(w=FirstNeighbor(G,v);w>=0;w=NextNeighbor(G,v,w))

//从最近结点开始,依次找相邻结点
{
if(!visited[w]) //w为还未访问的相邻结点

{
DFS(G,w);

}
}
}

Ⅶ DFS的算法详解

首先选定图的类别(有向图、无向图),再选定图的存储结构,根据输入的顶点或者边建立图;并把相应的邻接表或者邻接矩阵输出; 根据已有的邻接矩阵或邻接表用递归方法编写深度优先搜索遍历算法,并输出遍历结果; 图的深度遍历原则:
1 如果有可能,访问一个领接的未访问的节点,标记它,并把它放入栈中。
2 当不能执行规则 1 时,如果栈不为空,则从栈中弹出一个元素。
3 如果不能执行规则 1 和规则 2 时,则完成了遍历。
代码中的图使用的是Graph 图-邻接矩阵法 来表示,其他的表示法请见:Graph 图-邻接表法
代码中的Stack为辅助结构,用来记载访问过的节点。栈的详细描述可以见:ArrayStack 栈 ,LinkedStack 栈 。
Vertex表示图中的节点,其中包含访问,是否访问,清除访问标志的方法。 Graph.main:提供简单测试。代码可以以指定下标的节点开始作深度遍历。 代码比较简单,除了Graph.dsf(int i)深度优先遍历算法外没有过多注释。

阅读全文

与算法dfs例题相关的资料

热点内容
dvd光盘存储汉子算法 浏览:755
苹果邮件无法连接服务器地址 浏览:958
phpffmpeg转码 浏览:669
长沙好玩的解压项目 浏览:140
专属学情分析报告是什么app 浏览:562
php工程部署 浏览:831
android全屏透明 浏览:730
阿里云服务器已开通怎么办 浏览:801
光遇为什么登录时服务器已满 浏览:300
PDF分析 浏览:483
h3c光纤全工半全工设置命令 浏览:141
公司法pdf下载 浏览:381
linuxmarkdown 浏览:350
华为手机怎么多选文件夹 浏览:683
如何取消命令方块指令 浏览:349
风翼app为什么进不去了 浏览:777
im4java压缩图片 浏览:362
数据查询网站源码 浏览:148
伊克塞尔文档怎么进行加密 浏览:889
app转账是什么 浏览:163