⑴ pso的算法结构
对微粒群算法结构的改进方案有很多种,对其可分类为:采用多个子种群;改进微粒学习对象的选取策略;修改微粒更新迭代公式;修改速度更新策略;修改速度限制方法、位置限制方法和动态确定搜索空间;与其他搜索技术相结合;以及针对多模问题所作的改进。
第一类方案是采用多个子种群。柯晶考虑优化问题对收敛速度和寻优精度的双重要求并借鉴多群体进化算法的思想,将寻优微粒分成两组,一组微粒采用压缩因子的局部模式PSO算法,另一组微粒采用惯性权重的全局模式PSO算法,两组微粒之间采用环形拓扑结构。对于高维优化问题,PSO算法需要的微粒个数很多,导致计算复杂度常常很高,并且很难得到好的解。因此,出现了一种协作微粒群算法(Cooperative ParticleSwarm Optimizer, CPSO-H),将输入向量拆分成多个子向量,并对每个子向量使用一个微粒群来进行优化。虽然CPSO-H算法使用一维群体来分别搜索每一维,但是这些搜索结果被一个全局群体集成起来之后,在多模问题上的性能与原始PSO算法相比有很大的改进。Chow使用多个互相交互的子群,并引入相邻群参考速度。冯奇峰提出将搜索区域分区,使用多个子群并通过微粒间的距离来保持多样性。陈国初将微粒分成飞行方向不同的两个分群,其中一分群朝最优微粒飞行,另一分群微粒朝相反方向飞行;飞行时,每一微粒不仅受到微粒本身飞行经验和本分群最优微粒的影响,还受到全群最优微粒的影响。Niu在PSO算法中引入主—从子群模式,提出一种多种群协作PSO算法。Seo提出一种多组PSO算法(Multigrouped PSO),使用N组微粒来同时搜索多模问题的N个峰。Selleri使用多个独立的子群,在微粒速度的更新方程中添加了一些新项,分别使得微粒向子群历史最优位置运动,或者远离其他子群的重心。王俊年借鉴递阶编码的思想,构造出一种多种群协同进化PSO算法。高鹰借鉴生态学中环境和种群竞争的关系,提出一种基于种群密度的多种群PSO算法。
第二类方案是改进微粒学习对象的选取策略。Al-kazemi提出多阶段PSO算法,将微粒按不同阶段的临时搜索目标分组,这些临时目标允许微粒向着或背着它自己或全局最好位置移动。Ting对每个微粒的pBest进行操作,每一维从其他随机确定的维度学习,之后如果新的pBest更好则替换原pBest;该文还比较了多种不同学习方式对应的PSO算法的性能。Liang提出一种新颖的学习策略CLPSO,利用所有其他微粒的历史最优信息来更新微粒的速度;每个微粒可以向不同的微粒学习,并且微粒的每一维可以向不同的微粒学习。该策略能够保持群体的多样性,防止早熟收敛,可以提高PSO算法在多模问题上的性能;通过实验将该算法与其它几种PSO算法的变种进行比较,实验结果表明该算法在解决多模复杂问题时效果很好。Zhao在PSO算法中使用适应值最好的n个值来代替速度更新公式中的gBest。Abdelbar提出一种模糊度量,从而使得每个邻域中有多个适应值最好的微粒可以影响其它微粒。Wang也采用多个适应值最好的微粒信息来更新微粒速度,并提出一种模糊规则来自适应地确定参数。崔志华提出一种动态调整的改进PSO算法,在运行过程中动态调整极限位置,使得每个微粒的极限位置在其所经历的最好位置与整体最好位置所形成的动态圆中分布。与原始PSO算法相反,有一类方法是远离最差位置而非飞向最优位置。Yang提出在算法中记录最差位置而非最优位置,所有微粒都远离这些最差位置。与此类似,Leontitsis在微粒群算法中引入排斥子的概念,在使用个体最优位置和群体最优位置信息的同时,在算法中记录当前的个体最差位置和群体最差位置,并利用它们将微粒排斥到最优位置,从而让微粒群更快地到达最优位置。孟建良提出一种改进的PSO算法,在进化的初期,微粒以较大的概率向种群中其他微粒的个体最优学习;在进化后期,微粒以较大的概率向当前全局最优个体学习。Yang在PSO算法中引入轮盘选择技术来确定gBest,使得所有个体在进化早期都有机会引领搜索方向,从而避免早熟。
第三类方案是修改微粒更新公式。Hendtlass在速度更新方程中给每个微粒添加了记忆能力。He在速度更新方程中引入被动聚集机制。曾建潮通过对PSO算法的速度进化迭代方程进行修正,提出一种保证全局收敛的随机PSO算法。Zeng在PSO算法中引入加速度项,使得PSO算法从一个二阶随机系统变为一个三阶随机系统,并使用PID控制器来控制算法的演化。为了改进PSO算法的全局搜索能力,Ho提出一种新的微粒速度和位置更新公式,并引入寿命(Age)变量。
第四类方案是修改速度更新策略。Liu认为过于频繁的速度更新会弱化微粒的局部开采能力并减慢收敛,因此提出一种松弛速度更新(RVU)策略,仅当微粒使用原速度不能进一步提高适应值时才更新速度,并通过试验证明该策略可以大大减小计算量并加速收敛。罗建宏对同步模式和异步模式的PSO算法进行了对比研究,试验结果表明异步模式收敛速度显着提高,同时寻优效果更好。Yang在微粒的更新规则中引入感情心理模型。Liu采用一个最小速度阈值来控制微粒的速度,并使用一个模糊逻辑控制器来自适应地调节该最小速度阈值。张利彪提出了对PSO算法增加更新概率,对一定比例的微粒并不按照原更新公式更新,而是再次随机初始化。Dioan利用遗传算法(GA)来演化PSO算法的结构,即微粒群中各微粒更新的顺序和频率。
第五类方案是修改速度限制方法、位置限制方法和动态确定搜索空间。Stacey提出一种重新随机化速度的速度限制和一种重新随机化位置的位置限制。Liu在[76]的基础上,在PSO算法中引入动量因子,来将微粒位置限制在可行范围内。陈炳瑞提出一种根据微粒群的最佳适应值动态压缩微粒群的搜索空间与微粒群飞行速度范围的改进PSO算法。
第六类方案是通过将PSO算法与一些其他的搜索技术进行结合来提高PSO算法的性能,主要目的有二,其一是提高种群多样性,避免早熟;其二是提高算法局部搜索能力。这些混合算法包括将各种遗传算子如选择、交叉、变异引入PSO算法,来增加种群的多样性并提高逃离局部最小的能力。Krink通过解决微粒间的冲突和聚集来增强种群多样性,提出一种空间扩展PSO算法(Spatial ExtensionPSO,SEPSO);但是SEPSO算法的参数比较难以调节,为此Monson提出一种自适应调节参数的方法。用以提高种群多样性的其他方法或模型还包括“吸引—排斥”、捕食—被捕食模型、耗散模型、自组织模型、生命周期模型(LifeCycle model)、贝叶斯优化模型、避免冲突机制、拥挤回避(Crowd Avoidance)、层次化公平竞争(HFC)、外部记忆、梯度下降技术、线性搜索、单纯形法算子、爬山法、劳动分工、主成分分析技术、卡尔曼滤波、遗传算法、随机搜索算法、模拟退火、禁忌搜索、蚁群算法(ACO)、人工免疫算法、混沌算法、微分演化、遗传规划等。还有人将PSO算法在量子空间进行了扩展。Zhao将多主体系统(MAS)与PSO算法集成起来,提出MAPSO算法。Medasani借鉴概率C均值和概率论中的思想对PSO算法进行扩展,提出一种概率PSO算法,让算法分勘探和开发两个阶段运行。
第七类方案专门针对多模问题,希望能够找到多个较优解。为了能使PSO算法一次获得待优化问题的多个较优解,Parsopoulos使用了偏转(Deflection)、拉伸(Stretching)和排斥(Repulsion)等技术,通过防止微粒运动到之前已经发现的最小区域,来找到尽可能多的最小点。但是这种方法会在检测到的局部最优点两端产生一些新的局部最优点,可能会导致优化算法陷入这些局部最小点。为此,Jin提出一种新的函数变换形式,可以避免该缺点。基于类似思想,熊勇提出一种旋转曲面变换方法。
保持种群多样性最简单的方法,是在多样性过小的时候,重置某些微粒或整个微粒群。Lvbjerg在PSO算法中采用自组织临界性作为一种度量,来描述微粒群中微粒相互之间的接近程度,来确定是否需要重新初始化微粒的位置。Clerc提出了一种“Re-Hope”方法,当搜索空间变得相当小但是仍未找到解时(No-Hope),重置微粒群。Fu提出一种带C-Pg变异的PSO算法,微粒按照一定概率飞向扰动点而非Pg。赫然提出了一种自适应逃逸微粒群算法,限制微粒在搜索空间内的飞行速度并给出速度的自适应策略。
另一种变种是小生境PSO算法,同时使用多个子种群来定位和跟踪多个最优解。Brits还研究了一种通过调整适应值计算方式的方法来同时找到多个最优解。Li在PSO算法中引入适应值共享技术来求解多模问题。Zhang在PSO算法中采用顺序生境(SequentialNiching)技术。在小生境PSO算法的基础上,还可以使用向量点积运算来确定各个小生境中的候选解及其边界,并使该过程并行化,以获得更好的结果。但是,各种小生境PSO算法存在一个共同的问题,即需要确定一个小生境半径,且算法性能对该参数很敏感。为解决该问题,Bird提出一种自适应确定niching参数的方法。
Hendtlass在PSO算法中引入短程力的概念,并基于此提出一种WoSP算法,可以同时确定多个最优点。刘宇提出一种多模态PSO算法,用聚类算法对微粒进行聚类,动态地将种群划分成几个类,并且使用微粒所属类的最优微粒而非整个种群的最好微粒来更新微粒的速度,从而可以同时得到多个近似最优解。Li在PSO算法中引入物种的概念,但是由于其使用的物种间距是固定的,该方法只适用于均匀分布的多模问题;为此,Yuan对该算法进行扩展,采用多尺度搜索方法对物种间距加以自适应的调整。
此外,也有研究者将PSO算法的思想引入其他算法中,如将PSO算法中微粒的运动规则嵌入到进化规划中,用PSO算法中的运动规则来替代演化算法中交叉算子的功能。
⑵ pso的并行算法
与大多数随机优化算法相似,当适应值评价函数的计算量比较大时,PSO算法的计算量会很大。为了解决该问题,研究者提出了并行PSO算法。与并行遗传算法类似,并行PSO算法也可以有三种并行群体模型:主从并行模型、岛屿群体模型和邻接模型。
Schutte采用同步实现方式,在计算完一代中所有点的适应值之后才进入下一代。这种并行方法虽然实现简单,但常常会导致并行效率很差。故而有人提出异步方式的并行算法,可以在对数值精度影响不大的条件下提高PSO算法的并行性能。这两种方式采用的都是主从并行模型,其中异步方式在求解上耦合性更高,更容易产生通信瓶颈。
Baskar提出一种两个子种群并行演化的并发PSO算法,其中一个子种群采用原始的PSO算法,另一个子种群采用基于适应值距离比的PSO算法(FDR-PSO);两个子种群之间频繁地进行信息交换。而El-Abd研究了在子种群中采用局部邻域版本的协作PSO算法,并研究了多种信息交换的方式及其对算法性能的影响。黄芳提出一种基于岛屿群体模型的并行PSO算法,并引入一种集中式迁移策略,提高了求解效率,同时改善了早收敛现象。
Li提出延迟交换信息的并行算法属于邻接模型,该算法可以提高速度,但可能使得解的质量变差。
⑶ 粒子群优化算法
姓名:杨晶晶 学号:21011210420 学院:通信工程学院
【嵌牛导读】
传统的多目标优化方法是将多目标问题通过加权求和转化为单目标问题来处理的,而粒子算法主要是解决一些多目标优化问题的(例如机械零件的多目标设计优化),其优点是容易实现,精度高,收敛速度快。
【嵌牛鼻子】粒子群算法的概念、公式、调参以及与遗传算法的比较。
【嵌牛提问】什么是粒子群算法?它的计算流程是什么?与遗传算法相比呢?
【嵌牛正文】
1. 概念
粒子群优化算法(PSO:Particle swarm optimization) 是一种进化计算技术(evolutionary computation),源于对鸟群捕食的行为研究。
粒子群优化算法的基本思想:是通过群体中个体之间的协作和信息共享来寻找最优解。
PSO的优势:在于简单容易实现并且没有许多参数的调节。目前已被广泛应用于函数优化、神经网络训练、模糊系统控制以及其他遗传算法的应用领域。
2. 算法
2.1 问题抽象
鸟被抽象为没有质量和体积的微粒(点),并延伸到N维空间,粒子i在N维空间的位置表示为矢量Xi=(x1,x2,…,xN),飞行速度表示为矢量Vi=(v1,v2,…,vN)。每个粒子都有一个由目标函数决定的适应值(fitness value),并且知道自己到目前为止发现的最好位置(pbest)和现在的位置Xi。这个可以看作是粒子自己的飞行经验。除此之外,每个粒子还知道到目前为止整个群体中所有粒子发现的最好位置(gbest)(gbest是pbest中的最好值),这个可以看作是粒子同伴的经验。粒子就是通过自己的经验和同伴中最好的经验来决定下一步的运动。
2.2 更新规则
PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次的迭代中,粒子通过跟踪两个“极值”(pbest,gbest)来更新自己。在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置。
公式(1)的第一部分称为【记忆项】,表示上次速度大小和方向的影响;公式(1)的第二部分称为【自身认知项】,是从当前点指向粒子自身最好点的一个矢量,表示粒子的动作来源于自己经验的部分;公式(1)的第三部分称为【群体认知项】,是一个从当前点指向种群最好点的矢量,反映了粒子间的协同合作和知识共享。粒子就是通过自己的经验和同伴中最好的经验来决定下一步的运动。
以上面两个公式为基础,形成了PSO的标准形式。
公式(2)和 公式(3)被视为标准PSO算法。
2.3 标准PSO算法流程
标准PSO算法的流程:
1)初始化一群微粒(群体规模为N),包括随机位置和速度;
2)评价每个微粒的适应度;
3)对每个微粒,将其适应值与其经过的最好位置pbest作比较,如果较好,则将其作为当前的最好位置pbest;
4)对每个微粒,将其适应值与其经过的最好位置gbest作比较,如果较好,则将其作为当前的最好位置gbest;
5)根据公式(2)、(3)调整微粒速度和位置;
6)未达到结束条件则转第2)步。
迭代终止条件根据具体问题一般选为最大迭代次数Gk或(和)微粒群迄今为止搜索到的最优位置满足预定最小适应阈值。
公式(2)和(3)中pbest和gbest分别表示微粒群的局部和全局最优位置。
当C1=0时,则粒子没有了认知能力,变为只有社会的模型(social-only):
被称为全局PSO算法。粒子有扩展搜索空间的能力,具有较快的收敛速度,但由于缺少局部搜索,对于复杂问题
比标准PSO 更易陷入局部最优。
当C2=0时,则粒子之间没有社会信息,模型变为只有认知(cognition-only)模型:
被称为局部PSO算法。由于个体之间没有信息的交流,整个群体相当于多个粒子进行盲目的随机搜索,收敛速度慢,因而得到最优解的可能性小。
2.4 参数分析
参数:群体规模N,惯性因子 ,学习因子c1和c2,最大速度Vmax,最大迭代次数Gk。
群体规模N:一般取20~40,对较难或特定类别的问题可以取到100~200。
最大速度Vmax:决定当前位置与最好位置之间的区域的分辨率(或精度)。如果太快,则粒子有可能越过极小点;如果太慢,则粒子不能在局部极小点之外进行足够的探索,会陷入到局部极值区域内。这种限制可以达到防止计算溢出、决定问题空间搜索的粒度的目的。
权重因子:包括惯性因子和学习因子c1和c2。使粒子保持着运动惯性,使其具有扩展搜索空间的趋势,有能力探索新的区域。c1和c2代表将每个粒子推向pbest和gbest位置的统计加速项的权值。较低的值允许粒子在被拉回之前可以在目标区域外徘徊,较高的值导致粒子突然地冲向或越过目标区域。
参数设置:
1)如果令c1=c2=0,粒子将一直以当前速度的飞行,直到边界。很难找到最优解。
2)如果=0,则速度只取决于当前位置和历史最好位置,速度本身没有记忆性。假设一个粒子处在全局最好位置,它将保持静止,其他粒子则飞向它的最好位置和全局最好位置的加权中心。粒子将收缩到当前全局最好位置。在加上第一部分后,粒子有扩展搜索空间的趋势,这也使得的作用表现为针对不同的搜索问题,调整算法的全局和局部搜索能力的平衡。较大时,具有较强的全局搜索能力;较小时,具有较强的局部搜索能力。
3)通常设c1=c2=2。Suganthan的实验表明:c1和c2为常数时可以得到较好的解,但不一定必须等于2。Clerc引入收敛因子(constriction factor) K来保证收敛性。
通常取为4.1,则K=0.729.实验表明,与使用惯性权重的PSO算法相比,使用收敛因子的PSO有更快的收敛速度。其实只要恰当的选取和c1、c2,两种算法是一样的。因此使用收敛因子的PSO可以看作使用惯性权重PSO的特例。
恰当的选取算法的参数值可以改善算法的性能。
3. PSO与其它算法的比较
3.1 遗传算法和PSO的比较
1)共性:
(1)都属于仿生算法。
(2)都属于全局优化方法。
(3)都属于随机搜索算法。
(4)都隐含并行性。
(5)根据个体的适配信息进行搜索,因此不受函数约束条件的限制,如连续性、可导性等。
(6)对高维复杂问题,往往会遇到早熟收敛和收敛 性能差的缺点,都无法保证收敛到最优点。
2)差异:
(1)PSO有记忆,好的解的知识所有粒子都保 存,而GA(Genetic Algorithm),以前的知识随着种群的改变被改变。
(2)PSO中的粒子仅仅通过当前搜索到最优点进行共享信息,所以很大程度上这是一种单共享项信息机制。而GA中,染色体之间相互共享信息,使得整个种群都向最优区域移动。
(3)GA的编码技术和遗传操作比较简单,而PSO相对于GA,没有交叉和变异操作,粒子只是通过内部速度进行更新,因此原理更简单、参数更少、实现更容易。
(4)应用于人工神经网络(ANN)
GA可以用来研究NN的三个方面:网络连接权重、网络结构、学习算法。优势在于可处理传统方法不能处理的问题,例如不可导的节点传递函数或没有梯度信息。
GA缺点:在某些问题上性能不是特别好;网络权重的编码和遗传算子的选择有时较麻烦。
已有利用PSO来进行神经网络训练。研究表明PSO是一种很有潜力的神经网络算法。速度较快且有较好的结果。且没有遗传算法碰到的问题。
⑷ 如何用粒子群优化(PSO)算法实现多目标优化
粒子群算法,也称粒子群优化算法(ParticleSwarmOptimization),缩写为PSO,是近年来发展起来的一种新的进化算法(EvolutionaryAlgorithm-EA)。PSO算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover)和“变异”(Mutation)操作,它通过追随当前搜索到的最优值来寻找全局最优。这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。粒子群算法是一种并行算法。
⑸ 怎样用PSO算法求解一个简单的函数
约束优化
约束优化问题的目标是在满足一组线性或非线性约束的条件下,找到使得适应值函数最优的解。对于约束优化问题,需要对原始PSO算法进行改进来处理约束。 一种简单的方法是,所有的微粒初始化时都从可行解开始,在更新过程中,仅需记住在可行空间中的位置,抛弃那些不可行解即可。该方法的缺点是对于某些问题,初始的可行解集很难找到。或者,当微粒位置超出可行范围时,可将微粒位置重置为之前找到的最好位置,这种简单的修正就能成功找到一系列Benchmark问题的最优解。Paquet让微粒在运动过程中保持线性约束,从而得到一种可以解决线性约束优化问题的PSO算法。Pulido引入扰动算子和约束处理机制来处理约束优化问题。Park提出一种改进的PSO算法来处理等式约束和不等式约束。 另一种简单的方法是使用惩罚函数将约束优化问题转变为无约束优化问题,之后再使用PSO算法来进行求解。Shi将约束优化问题转化为最小—最大问题,并使用两个共同进化的微粒群来对其求解。谭瑛提出一种双微粒群的PSO算法,通过在微粒群间引入目标信息与约束信息项来解决在满足约束条件下求解目标函数的最优化问题。Zavala在PSO算法中引入两个扰动算子,用来解决单目标约束优化问题。 第三种方法是采用修复策略,将微粒发现的违反约束的解修复为满足约束的解。
约束满足问题
PSO算法设计的初衷是用来求解连续问题,但近年来对于可满足性问题PSO算法的研究也不断得到人们的重视。Schoofs提出用PSO算法求解二元约束满足问题,对微粒的位置和速度计算公式进行了重新定义,使用变量和它的关联变量存在的冲突数作为微粒的适应度函数,并指出该算法在求解约束满足问题上具有一定优势。Lin在Schoofs工作的基础上研究了使用PSO算法来求解通用的n元约束满足问题。杨轻云在Schoofs工作的基础上对适应度函数进行了改进,把最大度静态变量序列引入到适应度函数的计算中。
⑹ 如图,如何用这个PSO算法或遗传算法来求函数极值,用C语言编写代码
需要很多的子函数 %子程序:新物种交叉操作,函数名称存储为crossover.m function scro=crossover(population,seln,pc); BitLength=size(population,2); pcc=IfCroIfMut(pc);%根据交叉概率决定是否进行交叉操作,1则是,0则否 if pcc==1 chb=round(rand*(BitLength-2))+1;%在[1,BitLength-1]范围内随机产生一个交叉位 scro(1,:)=[population(seln(1),1:chb) population(seln(2),chb+1:BitLength)] scro(2,:)=[population(seln(2),1:chb) population(seln(1),chb+1:BitLength)] else scro(1,:)=population(seln(1),:); scro(2,:)=population(seln(2),:); end %子程序:计算适应度函数,函数名称存储为fitnessfun.m function [Fitvalue,cumsump]=fitnessfun(population); global BitLength global boundsbegin global boundsend popsize=size(population,1);%有popsize个个体 for i=1:popsize x=transform2to10(population(i,:));%将二进制转换为十进制 %转化为[-2,2]区间的实数 xx=boundsbegin+x*(boundsend-boundsbegin)/(power(2,BitLength)-1); Fitvalue(i)=targetfun(xx);%计算函数值,即适应度 end %给适...
望采纳!
⑺ 二进制PSO算法
PSO算法中每一粒子都被看是潜在的最优解,具体实现思路是先将粒子初始化,对于每个粒子都有一个当前位置以及根据适应度值做粒子更新的速度(Kennedy et al.,1995),通过迭代计算得到最优解。PSO粒子速度计算和对应位置更新的原理如式(8.1)、式(8.2)所示:
高光谱遥感影像信息提取技术
式中:xid是粒子;c1,c2是学习因子;w是惯性因子,是粒子速度保持更新之前粒子速度的能力;pid是目前单个粒子最优位置;pgd是整个粒子群目前得到的最优位置;rand是0~1之间的随机数。
二进制PSO首先将粒子初始化为0和1组成的序列。二进制PSO算法是对式(8.2)作些改变,其位置更新如式(8.3)所示(程志刚等,2007):
高光谱遥感影像信息提取技术
式中: 是 Sigmoid 函数。