1. 最小生成树怎么求
一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。最小生成树可以用kruskal(克鲁斯卡尔)算法或Prim(普里姆)算法求出。
求MST的一般算法可描述为:针对图G,从空树T开始,往集合T中逐条选择并加入n-1条安全边(u,v),最终生成一棵含n-1条边的MST。
当一条边(u,v)加入T时,必须保证T∪{(u,v)}仍是MST的子集,我们将这样的边称为T的安全边。
伪代码
GenerieMST(G){//求G的某棵MST
T〈-¢; //T初始为空,是指顶点集和边集均空
while T未形成G的生成树 do{
找出T的一条安全边(u,v);//即T∪{(u,v)}仍为MST的子集
T=T∪{(u,v)}; //加入安全边,扩充T
}
return T; //T为生成树且是G的一棵MST
}
注意:
下面给出的两种求MST的算法均是对上述的一般算法的求精,两算法的区别仅在于求安全边的方法不同。
为简单起见,下面用序号0,1,…,n-1来表示顶点集,即是:
V(G)={0,1,…,n-1},
G中边上的权解释为长度,并设T=(U,TE)。
求最小生成树的具体算法(pascal):
Prim算法
procere prim(v0:integer);
var
lowcost,closest:array[1..maxn] of integer;
i,j,k,min:integer;
begin
for i:=1 to n do begin
lowcost[i]:=cost[v0,i];
closest[i]:=v0;
end;
for i:=1 to n-1 do begin
{寻找离生成树最近的未加入顶点 k}
min:=maxlongint;
for j:=1 to n do
if (lowcost[j]<min) and (lowcost[j]<>0) then begin
min:=lowcost[j];
k:=j;
end;
lowcost[k]:=0; {将顶点k 加入生成树}
{生成树中增加一条新的边 k 到 closest[k]}
{修正各点的 lowcost 和 closest 值}
for j:=1 to n do
if cost[k,j]<lowcost[j] then begin
lowcost[j]:=cost[k,j];
closest[j]:=k;
end;
end;
end;
Kruskal算法
按权值递增顺序删去图中的边,若不形成回路则将此边加入最小生成树。
function find(v:integer):integer; {返回顶点 v 所在的集合}
var i:integer;
begin
i:=1;
while (i<=n) and (not v in vset) do inc(i);
if i<=n then find:=i else find:=0;
end;
procere kruskal;
var
tot,i,j:integer;
begin
for i:=1 to n do vset:=i;{初始化定义 n 个集合,第 I个集合包含一个元素 I}
p:=n-1; q:=1; tot:=0; {p 为尚待加入的边数,q 为边集指针}
sort;
{对所有边按权值递增排序,存于 e中,e.v1 与 e.v2 为边 I 所连接的两个顶点的
序号,e.len 为第 I条边的长度}
while p>0 do begin
i:=find(e[q].v1);j:=find(e[q].v2);
if i<>j then begin
inc(tot,e[q].len);
vset:=vset+vset[j];vset[j]:=[];
dec(p);
end;
inc(q);
end;
writeln(tot);
end;
C语言代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#include<stdio.h>
#include<stdlib.h>
#include<iostream.h>
#defineMAX_VERTEX_NUM20
#defineOK1
#defineERROR0
#defineMAX1000
typedefstructArcell
{
doubleadj;
}Arcell,AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM];
typedefstruct
{
charvexs[MAX_VERTEX_NUM];//节点数组
AdjMatrixarcs;//邻接矩阵
intvexnum,arcnum;//图的当前节点数和弧数
}MGraph;
typedefstructPnode//用于普利姆算法
{
charadjvex;//节点
doublelowcost;//权值
}Pnode,Closedge[MAX_VERTEX_NUM];//记录顶点集U到V-U的代价最小的边的辅助数组定义
typedefstructKnode//用于克鲁斯卡尔算法中存储一条边及其对应的2个节点
{
charch1;//节点1
charch2;//节点2
doublevalue;//权值
}Knode,Dgevalue[MAX_VERTEX_NUM];
//-------------------------------------------------------------------------------
intCreateUDG(MGraph&G,Dgevalue&dgevalue);
intLocateVex(MGraphG,charch);
intMinimum(MGraphG,Closedgeclosedge);
voidMiniSpanTree_PRIM(MGraphG,charu);
voidSortdge(Dgevalue&dgevalue,MGraphG);
//-------------------------------------------------------------------------------
intCreateUDG(MGraph&G,Dgevalue&dgevalue)//构造无向加权图的邻接矩阵
{
inti,j,k;
cout<<"请输入图中节点个数和边/弧的条数:";
cin>>G.vexnum>>G.arcnum;
cout<<"请输入节点:";
for(i=0;i<G.vexnum;++i)
cin>>G.vexs[i];
for(i=0;i<G.vexnum;++i)//初始化数组
{
for(j=0;j<G.vexnum;++j)
{
G.arcs[i][j].adj=MAX;
}
}
cout<<"请输入一条边依附的定点及边的权值:"<<endl;
for(k=0;k<G.arcnum;++k)
{
cin>>dgevalue[k].ch1>>dgevalue[k].ch2>>dgevalue[k].value;
i=LocateVex(G,dgevalue[k].ch1);
j=LocateVex(G,dgevalue[k].ch2);
G.arcs[i][j].adj=dgevalue[k].value;
G.arcs[j][i].adj=G.arcs[i][j].adj;
}
returnOK;
}
intLocateVex(MGraphG,charch)//确定节点ch在图G.vexs中的位置
{
inta;
for(inti=0;i<G.vexnum;i++)
{
if(G.vexs[i]==ch)
a=i;
}
returna;
}
voidMiniSpanTree_PRIM(MGraphG,charu)//普利姆算法求最小生成树
{
inti,j,k;
Closedgeclosedge;
k=LocateVex(G,u);
for(j=0;j<G.vexnum;j++)
{
if(j!=k)
{
closedge[j].adjvex=u;
closedge[j].lowcost=G.arcs[k][j].adj;
}
}
closedge[k].lowcost=0;
for(i=1;i<G.vexnum;i++)
{
k=Minimum(G,closedge);
cout<<"("<<closedge[k].adjvex<<","<<G.vexs[k]<<","<<closedge[k].lowcost<<")"<<endl;
closedge[k].lowcost=0;
for(j=0;j<G.vexnum;++j)
{
if(G.arcs[k][j].adj<closedge[j].lowcost)
{
closedge[j].adjvex=G.vexs[k];
closedge[j].lowcost=G.arcs[k][j].adj;
}
}
}
}
intMinimum(MGraphG,Closedgeclosedge)//求closedge中权值最小的边,并返回其顶点在vexs中的位置
{
inti,j;
doublek=1000;
for(i=0;i<G.vexnum;i++)
{
if(closedge[i].lowcost!=0&&closedge[i].lowcost<k)
{
k=closedge[i].lowcost;
j=i;
}
}
returnj;
}
voidMiniSpanTree_KRSL(MGraphG,Dgevalue&dgevalue)//克鲁斯卡尔算法求最小生成树
{
intp1,p2,i,j;
intbj[MAX_VERTEX_NUM];//标记数组
for(i=0;i<G.vexnum;i++)//标记数组初始化
bj[i]=i;
Sortdge(dgevalue,G);//将所有权值按从小到大排序
for(i=0;i<G.arcnum;i++)
{
p1=bj[LocateVex(G,dgevalue[i].ch1)];
p2=bj[LocateVex(G,dgevalue[i].ch2)];
if(p1!=p2)
{
cout<<"("<<dgevalue[i].ch1<<","<<dgevalue[i].ch2<<","<<dgevalue[i].value<<")"<<endl;
for(j=0;j<G.vexnum;j++)
{
if(bj[j]==p2)
bj[j]=p1;
}
}
}
}
voidSortdge(Dgevalue&dgevalue,MGraphG)//对dgevalue中各元素按权值按从小到大排序
{
inti,j;
doubletemp;
charch1,ch2;
for(i=0;i<G.arcnum;i++)
{
for(j=i;j<G.arcnum;j++)
{
if(dgevalue[i].value>dgevalue[j].value)
{
temp=dgevalue[i].value;
dgevalue[i].value=dgevalue[j].value;
dgevalue[j].value=temp;
ch1=dgevalue[i].ch1;
dgevalue[i].ch1=dgevalue[j].ch1;
dgevalue[j].ch1=ch1;
ch2=dgevalue[i].ch2;
dgevalue[i].ch2=dgevalue[j].ch2;
dgevalue[j].ch2=ch2;
}
}
}
}
voidmain()
{
inti,j;
MGraphG;
charu;
Dgevaluedgevalue;
CreateUDG(G,dgevalue);
cout<<"图的邻接矩阵为:"<<endl;
for(i=0;i<G.vexnum;i++)
{
for(j=0;j<G.vexnum;j++)
cout<<G.arcs[i][j].adj<<"";
cout<<endl;
}
cout<<"=============普利姆算法===============\n";
cout<<"请输入起始点:";
cin>>u;
cout<<"构成最小代价生成树的边集为:\n";
MiniSpanTree_PRIM(G,u);
cout<<"============克鲁斯科尔算法=============\n";
cout<<"构成最小代价生成树的边集为:\n";
MiniSpanTree_KRSL(G,dgevalue);
}
pascal算法
program didi;
var
a:array[0..100000] of record
s,t,len:longint;
end;
fa,r:array[0..10000] of longint;
n,i,j,x,y,z:longint;
tot,ans:longint;
count,xx:longint;
procere quick(l,r:longint);
var
i,j,x,y,t:longint;
begin
i:=l;j:=r;
x:=a[(l+r) div 2].len;
repeat
while x>a[i].len do inc(i);
while x<a[j].len do dec(j);
if i<=j then
begin
y:=a[i].len;a[i].len:=a[j].len;a[j].len:=y;
y:=a[i].s;a[i].s:=a[j].s;a[j].s:=y;
y:=a[i].t;a[i].t:=a[j].t;a[j].t:=y;
inc(i);dec(j);
end;
until i>j;
if i<r then quick(i,r);
if l<j then quick(l,j);
end;
function find(x:longint):longint;
begin
if fa[x]<>x then fa[x]:=find(fa[x]);
find:=fa[x];
end;
procere union(x,y:longint);{启发式合并}
var
t:longint;
begin
x:=find(x);
y:=find(y);
if r[x]>r[y] then
begin
t:=x;x:=y;y:=t;
end;
if r[x]=r[y] then inc(r[x]);
fa[x]:=y;
end;
begin
readln(xx,n);
for i:=1 to xx do fa[i]:=i;
for i:=1 to n do
begin
read(x,y,z);
inc(tot);
a[tot].s:=x;
a[tot].t:=y;
a[tot].len:=z;
end;
quick(1,tot);{将边排序}
ans:=0;
count:=0;
i:=0;
while count<=x-1 do{count记录加边的总数}
begin
inc(i);
with a[i] do
if find(s)<find(t) then
begin
union(s,t);
ans:=ans+len;
inc(count);
end;
end;
write(ans);
end.
Prim
var
m,n:set of 1..100;
s,t,min,x,y,i,j,k,l,sum,p,ii:longint;
a:array[1..100,1..100]of longint;
begin
readln(p);
for ii:=1 to p do
begin
k:=0; sum:=0;
fillchar(a,sizeof(a),255);
readln(x);
m:=[1];
n:=[2..x];
for i:=1 to x do
begin
for j:=1 to x do
begin
read(a[i,j]);
if a[i,j]=0
then a[i,j]:=maxlongint;
end;
readln;
end;
for l:=1 to x-1 do
begin
min:=maxlongint;
for i:=1 to x do
if i in m
then begin
for j:=1 to x do
begin
if (a[i,j]<min)and(j in n)
then begin
min:=a[i,j];
s:=i;
t:=j;
end;
end;
end;
sum:=sum+min;
m:=m+[t];
n:=n-[t];
inc(k);
end;
writeln(sum);
end;
end.
2. 最小生成树两种算法有何区别
主要有两个:
1.普里姆(Prim)算法
特点:时间复杂度为O(n2).适合于求边稠密的最小生成树。
2.克鲁斯卡尔(Kruskal)算法
特点:时间复杂度为O(eloge)(e为网中边数),适合于求稀疏的网的最小生成树。
3. 利用Prim(普里姆)算法 构造最小生成树 程序
算法同样是解决最小生成树的问题。
其算法为:在这n个点中的相通的边进行排序,然后不断地将边添加到集合中(体现了贪心的算法特点),在并入集合之前,必须检查一下这两点是不是在一个集合当中,这就用到了并查集的知识。直到边的集合达到了n-1个。
与prim算法的不同:prim算法为单源不断寻找连接的最短边,向外扩展,即单树形成森林。而Kruskal算法则是不断寻找最短边然后不断将集合合并,即多树形成森林。
复杂度的不同:prim算法的复杂度是O(n^2),其中n为点的个数。Kruskal算法的复杂度是O(e*loge),其中e为边的个数。两者各有优劣,在不同的情况下选择不同的算法。
Prim算法用于求无向图的最小生成树
设图G =(V,E),其生成树的顶点集合为U。
①、把v0放入U。
②、在所有u∈U,v∈V-U的边(u,v)∈E中找一条最小权值的边,加入生成树。
③、把②找到的边的v加入U集合。如果U集合已有n个元素,则结束,否则继续执行②。
其算法的时间复杂度为O(n^2)
Prim算法实现:
(1)集合:设置一个数组set(i=0,1,..,n-1),初始值为 0,代表对应顶点不在集合中(注意:顶点号与下标号差1)
(2)图用邻接阵表示,路径不通用无穷大表示,在计算机中可用一个大整数代替。
{先选定一个点,然后从该点出发,与该点相连的点取权值最小者归入集合,然后再比较在集合中的两点与其它各点的边的权值最小者,再次进入集合,一直到将所有的点都归入集合为止。}