❶ 分数指数幂的运算法则是什么
指数加减底不变,同底数幂相乘除。
指数相乘底不变,幂的乘方要清楚。
积商乘方原指数,换底乘方再乘除。
非零数的零次幂,常值为 1不糊涂。
负整数的指数幂,指数转正求倒数。
看到分数指数幂,想到底数必非负。
乘方指数是分子,根指数要当分母。
意义
把单位“1”平均分成几份,表示这样一份或几份的数叫做分数。在分数里,表示把单位“1”平均分成多少份的叫做分母,表示有这样多少份的叫做分子;其中的一份叫做分数单位。
要了解小数的意义,可从分数的意义着手,分数的意义可从分割及合成活动来解释,当一个整体被等分后,在集聚其中一部分的量称为“分量”,而“分数”就是用来表示或纪录这个“分量”。
❷ 幂运算所有的运算法则。
1、同底数幂的乘法:
aᵐ·aⁿ·aᵖ=aᵐ⁺ⁿ⁺ᵖ(m, n, p都是正整数)。
2、幂的乘方(aᵐ)ⁿ=a(ᵐⁿ),与积的乘方(ab)ⁿ=aⁿbⁿ
3、同底数幂的除法:
(1)同底数幂的除法:aᵐ÷aⁿ=a(ᵐ⁻ⁿ)(a≠0, m, n均为正整数,并且m>n)
(2)零指数:a⁰=1 (a≠0);
(3)负整数指数幂:a⁻ᵖ= (a≠0, p是正整数),当a=0时没有意义,0⁻²,0⁻²都无意义。
3、负指数幂
当底数n≠0时,由于n⁰÷nᵃ=1÷nᵃ=1/nᵃ,根据幂的运算规则可知,n⁰÷nᵃ=n⁰⁻ᵃ=n⁻ᵃ=1/nᵃ
因此定义负指数幂如下:a⁻ᵖ=1/aᵖ,a≠0。