导航:首页 > 源码编译 > 贪心算法的一般解题策略

贪心算法的一般解题策略

发布时间:2023-08-03 11:14:18

1. 五大常用算法之一:贪心算法

所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,换句话说,当考虑做何种选择的时候,我们只考虑对当前问题最佳的选择而不考虑子问题的结果。这是贪心算法可行的第一个基本要素。贪心算法以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。 对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解。
当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的最优子结构性质是该问题可用贪心算法求解的关键特征。

值得注意的是,贪心算法并不是完全不可以使用,贪心策略一旦经过证明成立后,它就是一种高效的算法。比如, 求最小生成树的Prim算法和Kruskal算法都是漂亮的贪心算法
贪心算法还是很常见的算法之一,这是由于它简单易行,构造贪心策略不是很困难。
可惜的是,它需要证明后才能真正运用到题目的算法中。
一般来说,贪心算法的证明围绕着:整个问题的最优解一定由在贪心策略中存在的子问题的最优解得来的。
对于例题中的3种贪心策略,都是无法成立(无法被证明)的,解释如下:
贪心策略:选取价值最大者。反例:

W=30

物品:A B C

重量:28 12 12

价值:30 20 20

根据策略,首先选取物品A,接下来就无法再选取了,可是,选取B、C则更好。

(2)贪心策略:选取重量最小。它的反例与第一种策略的反例差不多。

(3)贪心策略:选取单位重量价值最大的物品。反例:

W=30

物品:A B C

重量:28 20 10

价值:28 20 10

根据策略,三种物品单位重量价值一样,程序无法依据现有策略作出判断,如果选择A,则答案错误。但是果在条件中加一句当遇见单位价值相同的时候,优先装重量小的,这样的问题就可以解决.

所以需要说明的是,贪心算法可以与随机化算法一起使用,具体的例子就不再多举了。(因为这一类算法普及性不高,而且技术含量是非常高的,需要通过一些反例确定随机的对象是什么,随机程度如何,但也是不能保证完全正确,只能是极大的几率正确)。

2. 程序员算法基础——贪心算法

贪心是人类自带的能力,贪心算法是在贪心决策上进行统筹规划的统称。

比如一道常见的算法笔试题---- 跳一跳

我们自然而然能产生一种解法:尽可能的往右跳,看最后是否能到达。
本文即是对这种贪心决策的介绍。

狭义的贪心算法指的是解最优化问题的一种特殊方法,解决过程中总是做出当下最好的选择,因为具有最优子结构的特点,局部最优解可以得到全局最优解;这种贪心算法是动态规划的一种特例。 能用贪心解决的问题,也可以用动态规划解决。

而广义的贪心指的是一种通用的贪心策略,基于当前局面而进行贪心决策。以 跳一跳 的题目为例:
我们发现的题目的核心在于 向右能到达的最远距离 ,我们用maxRight来表示;
此时有一种贪心的策略:从第1个盒子开始向右遍历,对于每个经过的盒子,不断更新maxRight的值。

贪心的思考过程类似动态规划,依旧是两步: 大事化小 小事化了
大事化小:
一个较大的问题,通过找到与子问题的重叠,把复杂的问题划分为多个小问题;
小事化了:
从小问题找到决策的核心,确定一种得到最优解的策略,比如跳一跳中的 向右能到达的最远距离

在证明局部的最优解是否可以推出全局最优解的时候,常会用到数学的证明方式。

如果是动态规划:
要凑出m元,必须先凑出m-1、m-2、m-5、m-10元,我们用dp[i]表示凑出i元的最少纸币数;
有 dp[i]=min(dp[i-1], dp[i-2], dp[i-5], dp[i-10]) + 1 ;
容易知道 dp[1]=dp[2]=dp[5]=dp[10]=1 ;
根据以上递推方程和初始化信息,可以容易推出dp[1~m]的所有值。

似乎有些不对? 平时我们找零钱有这么复杂吗?
从贪心算法角度出发,当m>10且我们有10元纸币,我们优先使用10元纸币,然后再是5元、2元、1元纸币。
从日常生活的经验知道,这么做是正确的,但是为什么?

假如我们把题目变成这样,原来的策略还能生效吗?

接下来我们来分析这种策略:
已知对于m元纸币,1,2,5元纸币使用了a,b,c张,我们有a+2b+5c=m;
假设存在一种情况,1、2、5元纸币使用数是x,y,z张,使用了更少的5元纸币(z<c),且纸币张数更少(x+y+z<a+b+c),即是用更少5元纸币得到最优解。
我们令k=5*(c-z),k元纸币需要floor(k/2)张2元纸币,k%2张1元纸币;(因为如果有2张1元纸币,可以使用1张2元纸币来替代,故而1元纸币只能是0张或者1张)
容易知道,减少(c-z)张5元纸币,需要增加floor(5*(c-z)/2)张2元纸币和(5*(c-z))%2张纸币,而这使得x+y+z必然大于a+b+c。
由此我们知道不可能存在使用更少5元纸币的更优解。
所以优先使用大额纸币是一种正确的贪心选择。

对于1、5、7元纸币,比如说要凑出10元,如果优先使用7元纸币,则张数是4;(1+1+1+7)
但如果只使用5元纸币,则张数是2;(5+5)
在这种情况下,优先使用大额纸币是不正确的贪心选择。(但用动态规划仍能得到最优解)

如果是动态规划:
前i秒的完成的任务数,可以由前面1~i-1秒的任务完成数推过来。
我们用 dp[i]表示前i秒能完成的任务数
在计算前i秒能完成的任务数时,对于第j个任务,我们有两种决策:
1、不执行这个任务,那么dp[i]没有变化;
2、执行这个任务,那么必须腾出来(Sj, Tj)这段时间,那么 dp[i] = max(dp[i], dp[ S[j] ] ) + 1 ;
比如说对于任务j如果是第5秒开始第10秒结束,如果i>=10,那么有 dp[i]=max(dp[i], dp[5] + 1); (相当于把第5秒到第i秒的时间分配给任务j)

再考虑贪心的策略,现实生活中人们是如何安排这种多任务的事情?我换一种描述方式:

我们自然而然会想到一个策略: 先把结束时间早的兼职给做了!
为什么?
因为先做完这个结束时间早的,能留出更多的时间做其他兼职。
我们天生具备了这种优化决策的能力。

这是一道 LeetCode题目 。
这个题目不能直接用动态规划去解,比如用dp[i]表示前i个人需要的最少糖果数。
因为(前i个人的最少糖果数)这种状态表示会收到第i+1个人的影响,如果a[i]>a[i+1],那么第i个人应该比第i+1个人多。
即是 这种状态表示不具备无后效性。

如果是我们分配糖果,我们应该怎么分配?
答案是: 从分数最低的开始。
按照分数排序,从最低开始分,每次判断是否比左右的分数高。
假设每个人分c[i]个糖果,那么对于第i个人有 c[i]=max(c[i-1],c[c+1])+1 ; (c[i]默认为0,如果在计算i的时候,c[i-1]为0,表示i-1的分数比i高)
但是,这样解决的时间复杂度为 O(NLogN) ,主要瓶颈是在排序。
如果提交,会得到 Time Limit Exceeded 的提示。

我们需要对贪心的策略进行优化:
我们把左右两种情况分开看。
如果只考虑比左边的人分数高时,容易得到策略:
从左到右遍历,如果a[i]>a[i-1],则有c[i]=c[i-1]+1;否则c[i]=1。

再考虑比右边的人分数高时,此时我们要从数组的最右边,向左开始遍历:
如果a[i]>a[i+1], 则有c[i]=c[i+1]+1;否则c[i]不变;

这样讲过两次遍历,我们可以得到一个分配方案,并且时间复杂度是 O(N)

题目给出关键信息:1、两个人过河,耗时为较长的时间;
还有隐藏的信息:2、两个人过河后,需要有一个人把船开回去;
要保证总时间尽可能小,这里有两个关键原则: 应该使得两个人时间差尽可能小(减少浪费),同时船回去的时间也尽可能小(减少等待)。

先不考虑空船回来的情况,如果有无限多的船,那么应该怎么分配?
答案: 每次从剩下的人选择耗时最长的人,再选择与他耗时最接近的人。

再考虑只有一条船的情况,假设有A/B/C三个人,并且耗时A<B<C。
那么最快的方案是:A+B去, A回;A+C去;总耗时是A+B+C。(因为A是最快的,让其他人来回时间只会更长, 减少等待的原则

如果有A/B/C/D四个人,且耗时A<B<C<D,这时有两种方案:
1、最快的来回送人方式,A+B去;A回;A+C去,A回;A+D去; 总耗时是B+C+D+2A (减少等待原则)
2、最快和次快一起送人方式,A+B先去,A回;C+D去,B回;A+B去;总耗时是 3B+D+A (减少浪费原则)
对比方案1、2的选择,我们发现差别仅在A+C和2B;
为何方案1、2差别里没有D?
因为D最终一定要过河,且耗时一定为D。

如果有A/B/C/D/E 5个人,且耗时A<B<C<D<E,这时如何抉择?
仍是从最慢的E看。(参考我们无限多船的情况)
方案1,减少等待;先送E过去,然后接着考虑四个人的情况;
方案2,减少浪费;先送E/D过去,然后接着考虑A/B/C三个人的情况;(4人的时候的方案2)

到5个人的时候,我们已经明显发了一个特点:问题是重复,且可以由子问题去解决。
根据5个人的情况,我们可以推出状态转移方程 dp[i] = min(dp[i - 1] + a[i] + a[1], dp[i - 2] + a[2] + a[1] + a[i] + a[2]);
再根据我们考虑的1、2、3、4个人的情况,我们分别可以算出dp[i]的初始化值:
dp[1] = a[1];
dp[2] = a[2];
dp[3] = a[2]+a[1]+a[3];
dp[4] = min(dp[3] + a[4] + a[1], dp[2]+a[2]+a[1]+a[4]+a[2]);

由上述的状态转移方程和初始化值,我们可以推出dp[n]的值。

贪心的学习过程,就是对自己的思考进行优化。
是把握已有信息,进行最优化决策。
这里还有一些收集的 贪心练习题 ,可以实践练习。
这里 还有在线分享,欢迎报名。

3. 求一个算法(贪心算法)

首先,无所谓哪里密集哪里不密集的说法,这是人为的区分,需要首先遍历全部格子才能确定,是最慢的算法,全部遍历过了就可以得出最优的路线了.
既然用贪心算法,为了思考方便,可以假设棋盘无穷大,算法的目的是判断下一步该往右走还是往下走,思想如下:
判断当前格子右、下两个相邻的格子是否有金块,情形如下:
1)如果一个有一个没有,则往有金块的格子走
2)如果都没有或都有,则需要判断往哪个方向走能更快的拾到下一个金块,方法如下:
让机器人假设地各往两个方向走一步,然后对当前格子作判断情形如下:
A)一个格子继续走能拾到金块,另一个不能,则上一步往该格子走
B)如果仍旧都有或都没有,重复2)直到找到符合A)的情形。

假设棋盘是N*N个格子,则贪心算法最坏的情形是要遍历整个棋盘,比如只有第一个格子有金块时,就需要遍历整个棋盘才能确定走法。最好的情形也需要遍历4*N个格子。
时间复杂度上来算的话,应该是O(nLogn)

4. [算法] 贪心算法证明思路

动态规划和贪心算法都需要问题具有最优子结构,但不同的是贪心 自顶向下 ,先做选择再求解一个结果子问题,而动态规划自底向上求解子问题,需要先求出子问题的最优解再做选择。这是因为,动态规划最优解有两个子问题时,求解子问题 时有j-i-1种选择,但贪心选择特征能够使 其中一个子问题必定为空 ,这种子问题和选择数目的减少使得子问题能够自顶向下被解决。

a) 定义子问题空间,做出一个选择从而产生一个或多个子问题。子问题空间的定义结合需要求解的目标和选择后子问题的描述刻画来考虑。
b) 利用“剪切-粘贴”证明作为最优解的组成部分的每个子问题的解也是它本身的最优解。如果子问题的解不是最优解,将其替换为对应的最优解从而一定能得到原问题一个更优的解,这与最初的解是原问题的最优解的前提假设矛盾,因此最优子结构得证。

贪心的本质是局部最优解能产生全局最优解,即产生两个子问题 和 时,可以直接解决子问题 (在子问题 中,使用贪心策略选择a作为局部最优解)然后对子问题 进行分解,最终可以合并为全局最优解。
因此,要证明贪心选择性质只需要证明 存在一个最优解是通过当前贪心选择策略得到的 ,反过来,即证明**通过非贪心策略得到的原问题的最优解中也一定包含局部最优解a。

定义通过非贪心策略的选择可以得到的一个最优解A,将最优解中的元素和当前贪心策略会选择的元素逐个交换后得到的解A'并不比
A差(假设贪心策略会选择的元素在当前最优解中未被选择,通过“剪切-粘贴”证明得到的仍是最优解),可以证明存在原问题的最优解可以通过贪心选择得到。

5. (三) 贪心算法

贪心算法的思想非常简单且算法效率很高,在一些问题的解决上有着明显的优势。

假设有3种硬币,面值分别为1元、5角、1角。这3种硬币各自的数量不限,现在要找给顾客3元6角钱,请问怎样找才能使得找给顾客的硬币数量最少呢?

你也许会不假思索的说出答案:找给顾客3枚1元硬币,1枚5角硬币,1枚1角硬币。其实也可以找给顾客7枚5角硬币,1枚1角硬币。可是在这里不符合题意。在这里,我们下意识地应用了所谓贪心算法解决这个问题。

所谓贪心算法,就是 总是做出在当前看来是最好的选择(未从整体考虑) 的一种方法。以上述的题目为例,为了找给顾客的硬币数量最少,在选择硬币的面值时,当然是尽可能地选择面值大的硬币。因此,下意识地遵循了以下方案:
(1)首先找出一个面值不超过3元6角的最大硬币,即1元硬币。
(2)然后从3元6角中减去1元,得到2元6角,再找出一个面值不超过2元6角的最大硬币,即1元硬币。
(3)然后从2元6角中减去1元,得到1元6角,再找出一个面值不超过1元6角的最大硬币,即1元硬币。
(4)然后从1元6角中减去1元,得到6角,再找出一个面值不超过6角的最大硬币,即5角硬币。
(5)然后从6角中减去5角,得到1角,再找出一个面值不超过1角的最大硬币,即1角硬币。
(6)找零钱的过程结束。
这个过程就是一个典型的贪心算法思想。

贪心策略总是做出在当前看来是最优的选择,也就是说贪心策略并不是从整体上加以考虑,它所做出的选择只是在某种意义上的 局部最优解 ,而许多问题自身的特性决定了该问题运用贪心策略可以得到最优解或较优解。(注:贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题它能产生整体最优解。但其解必然是最优解的很好近似解。)

贪心算法没有固定的算法框架,算法设计的关键是 贪心策略的选择 。选择的贪心策略必须具备无后效性。

贪心策略 适用的前提 是:

严格意义上讲,要使用贪心算法求解问题,该问题应当具备以下性质:

注意 :对于一个给定的问题,往往可能有好几种量度标准。初看起来,这些量度标准似乎都是可取的,但实际上,用其中的大多数量度标准作贪婪处理所得到该量度意义下的最优解并不是问题的最优解,而是次优解。

因此, 选择能产生问题最优解的最优量度标准是使用贪婪算法的核心 。

实际上,贪心算法 适用的情况很少 。一般,对一个问题分析是否适用于贪心算法,可以先选择该问题下的几个实际数据进行分析,就可做出判断。

最优解问题大部分都可以拆分成一个个的子问题(多阶段决策问题),把解空间的遍历视作对子问题树的遍历,则以某种形式对树整个的遍历一遍就可以求出最优解,大部分情况下这是不可行的。

贪心算法和动态规划本质上是对子问题树的一种修剪,两种算法要求问题都具有的一个性质就是子问题最优性(组成最优解的每一个子问题的解,对于这个子问题本身肯定也是最优的)。

动态规划方法代表了这一类问题的一般解法, 自底向上 构造子问题的解,对每一个子树的根,求出下面每一个叶子的值,并且以其中的最优值作为自身的值,其它的值舍弃。

而贪心算法是动态规划方法的一个特例,可以证明每一个子树的根的值不取决于下面叶子的值,而只取决于当前问题的状况。换句话说,不需要知道一个节点所有子树的情况,就可以求出这个节点的值。由于贪心算法的这个特性,它对解空间树的遍历不需要自底向上,而只需要自根开始( 自顶向下 ),选择最优的路,一直走到底就可以了。

一个问题分为多个阶段,每个阶段可以有n种决策,各个阶段的决策构成一个决策序列,称为一个策略。
这两种算法都是选择性算法,在进行决策的选择时:

前提是这个问题得具有贪心选择性质,需要证明(数学归纳法(第一、第二)),如果不满足那就只能使用动态规划解决。(一旦证明贪心选择性质,用贪心算法解决问题比动态规划具有更低的时间复杂度和空间复杂度。)

从范畴上来看:
Greedy ⊂ DP ⊂ Searching (贪心是动规的特例)
即所有的贪心算法问题都能用DP求解,更可以归结为一个搜索问题,反之不成立。

贪心算法所作的选择可以依赖于以往所作过的选择,但决不依赖于将来的选择,也不依赖于子问题的解,这使得算法在编码和执行的过程中都有着一定的速度优势。如果一个问题可以同时用几种方法解决,贪心算法应该是最好的选择之一。但是贪心算法并不是对所有的问题都能得到整体最优解或最理想的近似解,与回溯法等比较,它的适用区域相对狭窄许多,因此正确地判断它的应用时机十分重要。

一步一步地进行,常 以当前情况为基础根据某个优化测度作最优选择,而不考虑各种可能的整体情况 ,它省去了为找最优解要穷尽所有可能而必须耗费的大量时间。

它采用 自顶向下 ,以 迭代 的方法做出相继的贪心选择,每做一次贪心选择就将所求问题简化为一个规模更小的子问题,通过每一步贪心选择,可得到问题的一个最优解,虽然每一步上都要保证能获得局部最优解,但由此产生的全局解有时不一定是最优的,所以 贪心法不需要回溯 。

【问题描述】
马的遍历问题。在8×8方格的棋盘上,从任意指定方格出发,为马寻找一条走遍棋盘每一格并且只经过一次的一条最短路径。

【贪心算法】
其实马踏棋盘的问题很早就有人提出,且早在1823年,J.C.Warnsdorff就提出了一个有名的算法。在每个结点对其子结点进行选取时,优先选择‘出口’最小的进行搜索,‘出口’的意思是在这些子结点中它们的可行子结点的个数,也就是‘孙子’结点越少的越优先跳,为什么要这样选取,这是一种局部调整最优的做法,如果优先选择出口多的子结点,那出口少的子结点就会越来越多,很可能出现‘死’结点(顾名思义就是没有出口又没有跳过的结点),这样对下面的搜索纯粹是徒劳,这样会浪费很多无用的时间,反过来如果每次都优先选择出口少的结点跳,那出口少的结点就会越来越少,这样跳成功的机会就更大一些。

6. 贪心算法的本质

1. 贪心法(Greedy Algorithm)定义

求解最优化问题的算法通常需要经过一系列的步骤,在每个步骤都面临多种选择;

贪心法就是这样的算法:它在每个决策点作出在当时看来最佳的选择,即总是遵循某种规则,做出局部最优的选择,以推导出全局最优解(局部最优解->全局最优解)

2. 对贪心法的深入理解

(1)原理:一种启发式策略,在每个决策点作出在当时看来最佳的选择

(2)求解最优化问题的两个关键要素:贪心选择性质+最优子结构

①贪心选择性质:进行选择时,直接做出在当前问题中看来最优的选择,而不必考虑子问题的解;

②最优子结构:如果一个问题的最优解包含其子问题的最优解,则称此问题具有最优子结构性质

(3)解题关键:贪心策略的选择

贪心算法不是对所有问题都能得到整体最优解的,因此选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关。

(4)一般步骤:

①建立数学模型来描述最优化问题;

②把求解的最优化问题转化为这样的形式:对其做出一次选择后,只剩下一个子问题需要求解;

③证明做出贪心选择后:

1°原问题总是存在全局最优解,即贪心选择始终安全;

2°剩余子问题的局部最优解与贪心选择组合,即可得到原问题的全局最优解。

并完成2°

3. 贪心法与动态规划

最优解问题大部分都可以拆分成一个个的子问题,把解空间的遍历视作对子问题树的遍历,则以某种形式对树整个的遍历一遍就可以求出最优解,大部分情况下这是不可行的。贪心算法和动态规划本质上是对子问题树的一种修剪,两种算法要求问题都具有的一个性质就是子问题最优性(组成最优解的每一个子问题的解,对于这个子问题本身肯定也是最优的)。动态规划方法代表了这一类问题的一般解法,我们自底向上构造子问题的解,对每一个子树的根,求出下面每一个叶子的值,并且以其中的最优值作为自身的值,其它的值舍弃。而贪心算法是动态规划方法的一个特例,可以证明每一个子树的根的值不取决于下面叶子的值,而只取决于当前问题的状况。换句话说,不需要知道一个节点所有子树的情况,就可以求出这个节点的值。由于贪心算法的这个特性,它对解空间树的遍历不需要自底向上,而只需要自根开始,选择最优的路,一直走到底就可以了。

7. 数据结构之贪心算法

贪婪算法(Greedy)的定义:是一种在每一步选中都采取在当前状态下最好或最优的选择,从而希望导致结果是全局最好或最优的算法。
贪婪算法:当下做局部最优判断,不能回退
(能回退的是回溯,最优+回退是动态规划)
由于贪心算法的高效性以及所求得答案比较接近最优结果,贪心算法可以作为辅助算法或解决一些要求
结果不特别精确的问题
注意:当下是最优的,并不一定全局是最优的。举例如下:

有硬币分值为10、9、4若干枚,问如果组成分值18,最少需要多少枚硬币?
采用贪心算法,选择当下硬币分值最大的:10
18-10=8
8/4=2
即:1个10、2个4,共需要3枚硬币
实际上我们知道,选择分值为9的硬币,2枚就够了
18/9=2
如果改成:

背包问题是算法的经典问题,分为部分背包和0-1背包,主要区别如下:
部分背包:某件物品是一堆,可以带走其一部分
0-1背包:对于某件物品,要么被带走(选择了它),要么不被带走(没有选择它),不存在只带走一部分的情况。
部分背包问题可以用贪心算法求解,且能够得到最优解。
假设一共有N件物品,第 i 件物品的价值为 Vi ,重量为Wi,一个小偷有一个最多只能装下重量为W的背包,他希望带走的物品越有价值越好,可以带走某件物品的一部分,请问:他应该选择哪些物品?
假设背包可容纳50Kg的重量,物品信息如下表:

将物品按单位重量 所具有的价值排序。总是优先选择单位重量下价值最大的物品
按照我们的贪心策略,单位重量的价值排序: 物品A > 物品B > 物品C
因此,我们尽可能地多拿物品A,直到将物品1拿完之后,才去拿物品B,然后是物品C 可以只拿一部分.....

在不考虑排序的前提下,贪心算法只需要一次循环,所以时间复杂度是O(n)

优点:性能高,能用贪心算法解决的往往是最优解
缺点:在实际情况下能用的不多,用贪心算法解的往往不是最好的

针对一组数据,我们定义了限制值和期望值,希望从中选出几个数据,在满足限制值的情况下,期望值最大。
每次选择当前情况下,在对限制值同等贡献量的情况下,对期望值贡献最大的数据(局部最优而全局最优)
大部分能用贪心算法解决的问题,贪心算法的正确性都是显而易见的,也不需要严格的数学推导证明
在实际情况下,用贪心算法解决问题的思路,并不总能给出最优解

8. 贪心算法几个经典例子

[背包问题]有一个背包,背包容量是M=150。有7个物品,物品可以分割成任意大小。

要求尽可能让装入背包中的物品总价值最大,但不能超过总容量。

贪心算法是很常见的算法之一,这是由于它简单易行,构造贪心策略简单。但是,它需要证明后才能真正运用到题目的算法中。一般来说,贪心算法的证明围绕着整个问题的最优解一定由在贪心策略中存在的子问题的最优解得来的。

对于本例题中的3种贪心策略,都无法成立,即无法被证明。

阅读全文

与贪心算法的一般解题策略相关的资料

热点内容
如何用mamp本地web服务器 浏览:869
如何加密自己js代码 浏览:623
排列组合a与c的算法 浏览:534
如何在文件夹中找到同名内容 浏览:786
有什么app文字转韩文配音 浏览:372
循环宏1命令 浏览:35
斐波那契数列矩阵算法 浏览:674
公式保护后加密不了 浏览:82
java跳转到jsp 浏览:819
327平方根算法 浏览:216
win7美化命令行终端 浏览:797
免加密狗图片 浏览:485
一只透明的鸟是什么app 浏览:817
空气压缩机油批发商 浏览:69
linuxifexist 浏览:4
加密tf卡拷入文件 浏览:399
山西php工资 浏览:673
福州看病预约用什么小程序app 浏览:238
php保留两位小数不四舍五入 浏览:292
黑马程序员路径大全 浏览:1000