Ⅰ 请教做ACM的常用算法..还是菜鸟
初期:
一.基本算法:
(1)枚举. (poj1753,poj2965)
(2)贪心(poj1328,poj2109,poj2586)
(3)递归和分治法.
(4)递推.
(5)构造法.(poj3295)
(6)模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996)
二.图算法:
(1)图的深度优先遍历和广度优先遍历.
(2)最短路径算法(dijkstra,bellman-ford,floyd,heap+dijkstra)
(poj1860,poj3259,poj1062,poj2253,poj1125,poj2240)
(3)最小生成树算法(prim,kruskal)
(poj1789,poj2485,poj1258,poj3026)
(4)拓扑排序 (poj1094)
(5)二分图的最大匹配 (匈牙利算法) (poj3041,poj3020)
(6)最大流的增广路算法(KM算法). (poj1459,poj3436)
三.数据结构.
(1)串 (poj1035,poj3080,poj1936)
(2)排序(快排、归并排(与逆序数有关)、堆排) (poj2388,poj2299)
(3)简单并查集的应用.
(4)哈希表和二分查找等高效查找法(数的Hash,串的Hash)
(poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503)
(5)哈夫曼树(poj3253)
(6)堆
(7)trie树(静态建树、动态建树) (poj2513)
四.简单搜索
(1)深度优先搜索 (poj2488,poj3083,poj3009,poj1321,poj2251)
(2)广度优先搜索(poj3278,poj1426,poj3126,poj3087.poj3414)
(3)简单搜索技巧和剪枝(poj2531,poj1416,poj2676,1129)
五.动态规划
(1)背包问题. (poj1837,poj1276)
(2)型如下表的简单DP(可参考lrj的书 page149):
1.E[j]=opt{D+w(i,j)} (poj3267,poj1836,poj1260,poj2533)
2.E[i,j]=opt{D[i-1,j]+xi,D[i,j-1]+yj,D[i-1][j-1]+zij} (最长公共子序列)
(poj3176,poj1080,poj1159)
3.C[i,j]=w[i,j]+opt{C[i,k-1]+C[k,j]}.(最优二分检索树问题)
六.数学
(1)组合数学:
1.加法原理和乘法原理.
2.排列组合.
3.递推关系.
(POJ3252,poj1850,poj1019,poj1942)
(2)数论.
1.素数与整除问题
2.进制位.
3.同余模运算.
(poj2635, poj3292,poj1845,poj2115)
(3)计算方法.
1.二分法求解单调函数相关知识.(poj3273,poj3258,poj1905,poj3122)
七.计算几何学.
(1)几何公式.
(2)叉积和点积的运用(如线段相交的判定,点到线段的距离等). (poj2031,poj1039)
(3)多边型的简单算法(求面积)和相关判定(点在多边型内,多边型是否相交)
(poj1408,poj1584)
(4)凸包. (poj2187,poj1113)
中级:
一.基本算法:
(1)C++的标准模版库的应用. (poj3096,poj3007)
(2)较为复杂的模拟题的训练(poj3393,poj1472,poj3371,poj1027,poj2706)
二.图算法:
(1)差分约束系统的建立和求解. (poj1201,poj2983)
(2)最小费用最大流(poj2516,poj2516,poj2195)
(3)双连通分量(poj2942)
(4)强连通分支及其缩点.(poj2186)
(5)图的割边和割点(poj3352)
(6)最小割模型、网络流规约(poj3308, )
三.数据结构.
(1)线段树. (poj2528,poj2828,poj2777,poj2886,poj2750)
(2)静态二叉检索树. (poj2482,poj2352)
(3)树状树组(poj1195,poj3321)
(4)RMQ. (poj3264,poj3368)
(5)并查集的高级应用. (poj1703,2492)
(6)KMP算法. (poj1961,poj2406)
四.搜索
(1)最优化剪枝和可行性剪枝
(2)搜索的技巧和优化 (poj3411,poj1724)
(3)记忆化搜索(poj3373,poj1691)
五.动态规划
(1)较为复杂的动态规划(如动态规划解特别的施行商问题等)
(poj1191,poj1054,poj3280,poj2029,poj2948,poj1925,poj3034)
(2)记录状态的动态规划. (POJ3254,poj2411,poj1185)
(3)树型动态规划(poj2057,poj1947,poj2486,poj3140)
六.数学
(1)组合数学:
1.容斥原理.
2.抽屉原理.
3.置换群与Polya定理(poj1286,poj2409,poj3270,poj1026).
4.递推关系和母函数.
(2)数学.
1.高斯消元法(poj2947,poj1487, poj2065,poj1166,poj1222)
2.概率问题. (poj3071,poj3440)
3.GCD、扩展的欧几里德(中国剩余定理) (poj3101)
(3)计算方法.
1.0/1分数规划. (poj2976)
2.三分法求解单峰(单谷)的极值.
3.矩阵法(poj3150,poj3422,poj3070)
4.迭代逼近(poj3301)
(4)随机化算法(poj3318,poj2454)
(5)杂题.
(poj1870,poj3296,poj3286,poj1095)
七.计算几何学.
(1)坐标离散化.
(2)扫描线算法(例如求矩形的面积和周长并,常和线段树或堆一起使用).
(poj1765,poj1177,poj1151,poj3277,poj2280,poj3004)
(3)多边形的内核(半平面交)(poj3130,poj3335)
(4)几何工具的综合应用.(poj1819,poj1066,poj2043,poj3227,poj2165,poj3429)
高级:
一.基本算法要求:
(1)代码快速写成,精简但不失风格
(poj2525,poj1684,poj1421,poj1048,poj2050,poj3306)
(2)保证正确性和高效性. poj3434
二.图算法:
(1)度限制最小生成树和第K最短路. (poj1639)
(2)最短路,最小生成树,二分图,最大流问题的相关理论(主要是模型建立和求解)
(poj3155, poj2112,poj1966,poj3281,poj1087,poj2289,poj3216,poj2446
(3)最优比率生成树. (poj2728)
(4)最小树形图(poj3164)
(5)次小生成树.
(6)无向图、有向图的最小环
三.数据结构.
(1)trie图的建立和应用. (poj2778)
(2)LCA和RMQ问题(LCA(最近公共祖先问题) 有离线算法(并查集+dfs) 和 在线算法
(RMQ+dfs)).(poj1330)
(3)双端队列和它的应用(维护一个单调的队列,常常在动态规划中起到优化状态转移的
目的). (poj2823)
(4)左偏树(可合并堆).
(5)后缀树(非常有用的数据结构,也是赛区考题的热点).
(poj3415,poj3294)
四.搜索
(1)较麻烦的搜索题目训练(poj1069,poj3322,poj1475,poj1924,poj2049,poj3426)
(2)广搜的状态优化:利用M进制数存储状态、转化为串用hash表判重、按位压缩存储状态、双向广搜、A*算法. (poj1768,poj1184,poj1872,poj1324,poj2046,poj1482)
(3)深搜的优化:尽量用位运算、一定要加剪枝、函数参数尽可能少、层数不易过大、可以考虑双向搜索或者是轮换搜索、IDA*算法. (poj3131,poj2870,poj2286)
五.动态规划
(1)需要用数据结构优化的动态规划.
(poj2754,poj3378,poj3017)
(2)四边形不等式理论.
(3)较难的状态DP(poj3133)
六.数学
(1)组合数学.
1.MoBius反演(poj2888,poj2154)
2.偏序关系理论.
(2)博奕论.
1.极大极小过程(poj3317,poj1085)
2.Nim问题.
七.计算几何学.
(1)半平面求交(poj3384,poj2540)
(2)可视图的建立(poj2966)
(3)点集最小圆覆盖.
(4)对踵点(poj2079)
八.综合题.
(poj3109,poj1478,poj1462,poj2729,poj2048,poj3336,poj3315,poj2148,poj1263)
Dp状态设计与方程总结
1.不完全状态记录
<1>青蛙过河问题
<2>利用区间dp
2.背包类问题
<1> 0-1背包,经典问题
<2>无限背包,经典问题
<3>判定性背包问题
<4>带附属关系的背包问题
<5> + -1背包问题
<6>双背包求最优值
<7>构造三角形问题
<8>带上下界限制的背包问题(012背包)
3.线性的动态规划问题
<1>积木游戏问题
<2>决斗(判定性问题)
<3>圆的最大多边形问题
<4>统计单词个数问题
<5>棋盘分割
<6>日程安排问题
<7>最小逼近问题(求出两数之比最接近某数/两数之和等于某数等等)
<8>方块消除游戏(某区间可以连续消去求最大效益)
<9>资源分配问题
<10>数字三角形问题
<11>漂亮的打印
<12>邮局问题与构造答案
<13>最高积木问题
<14>两段连续和最大
<15>2次幂和问题
<16>N个数的最大M段子段和
<17>交叉最大数问题
4.判定性问题的dp(如判定整除、判定可达性等)
<1>模K问题的dp
<2>特殊的模K问题,求最大(最小)模K的数
<3>变换数问题
5.单调性优化的动态规划
<1>1-SUM问题
<2>2-SUM问题
<3>序列划分问题(单调队列优化)
6.剖分问题(多边形剖分/石子合并/圆的剖分/乘积最大)
<1>凸多边形的三角剖分问题
<2>乘积最大问题
<3>多边形游戏(多边形边上是操作符,顶点有权值)
<4>石子合并(N^3/N^2/NLogN各种优化)
7.贪心的动态规划
<1>最优装载问题
<2>部分背包问题
<3>乘船问题
<4>贪心策略
<5>双机调度问题Johnson算法
8.状态dp
<1>牛仔射击问题(博弈类)
<2>哈密顿路径的状态dp
<3>两支点天平平衡问题
<4>一个有向图的最接近二部图
9.树型dp
<1>完美服务器问题(每个节点有3种状态)
<2>小胖守皇宫问题
<3>网络收费问题
<4>树中漫游问题
<5>树上的博弈
<6>树的最大独立集问题
<7>树的最大平衡值问题
<8>构造树的最小环
Ⅱ km算法中两方数目不等应当怎么改该算法 附:c++程序
将点比较少的那一部扩充,使得其点数与另一部相同,再将两部之间不相邻的点连上边权为0的边,则问题转化成点数相同的问题。
Ⅲ 急急急!!!寻匈牙利算法、KM算法的代码!
寻匈牙利算法:
function [result,msum]=sbppp(cost,m)
if nargin==1
dd=cost;
else
dd=max(max(cost))-cost;
end
[nop,nop]=size(cost);msum=0;
for i=1:nop
dd(i,:)=dd(i,:)-min(dd(i,:));
end
for j=1:nop
dd(:,j)=dd(:,j)-min(dd(:,j));
end
backup=dd;
for z=1:nop
bh=nop;bl=nop;result=[];
for k=1:nop
for i=1:nop
h=find(dd(i,:)==0);
if length(h)~=0&length(h)<bh
bh=length(h);
ch=i;
end
end
L=find(dd(ch,:)==0);
for j=1:length(L)
l=find(dd(:,L(j))==0);
if length(l)<bl
bl=length(l);
cl=L(j);
end
end
result(1,k)=ch;result(2,k)=cl;
dd(ch,:)=1;dd(:,cl)=1;
bl=nop;bh=nop;
if length(find(dd==0))==0
break
end
end
if length(result(1,:))==nop
break
end
dd=backup;DD=dd;d=zeros(nop);
for i=1:length(result(1,:))
d(result(1,i),result(2,i))=1;
end
D=~(d+dd);
p=[];q=[];k=1;zx=inf;
for i=1:nop
if sum(d(i,:))==0
p(k)=i;
k=k+1;
end
end
for j=1:length(p)
q=find(D(p(j),:)==1);
for e=1:length(q)
pp=find(d(:,q(e))==1);
if pp~=0
p(k)=pp;
k=k+1;
end
end
end
for l=1:length(p)
q=find(D(p(l),:)==1);
for u=1:length(q)
DD(:,q(u))=inf;
end
end
for l=1:length(p)
if min(DD(p(l),:))<zx
zx=min(DD(p(l),:));
end
end
for l=1:length(p)
q=find(D(p(l),:)==1);
for u=1:length(q)
dd(:,q(u))=dd(:,q(u))+zx;
end
end
for l=1:length(p)
dd(p(l),:)=dd(p(l),:)-zx;
end
backup=dd;
end
for i=1:length(result(1,:))
msum=msum+cost(result(1,i),result(2,i));
end
匈牙利算法的MatLab实现 收藏
程序文件 fenpei.m
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
function [z,ans]=fenpei(marix)
%//////////////////////////////////////////////////
%输入效率矩阵 marix 为方阵;
%若效率矩阵中有 M,则用一充分大的数代替;
%输出z为最优解,ans为 最优分配矩阵;
%//////////////////////////////////////////////////
a=marix;
b=a;
%确定矩阵维数
s=length(a);
%确定矩阵行最小值,进行行减
ml=min(a');
for i=1:s
a(i,:)=a(i,:)-ml(i);
end
%确定矩阵列最小值,进行列减
mr=min(a);
for j=1:s
a(:,j)=a(:,j)-mr(j);
end
% start working
num=0;
while(num~=s) %终止条件是“(0)”的个数与矩阵的维数相同
%index用以标记矩阵中的零元素,若a(i,j)=0,则index(i,j)=1,否则index(i,j)=0
index=ones(s);
index=a&index;
index=~index;
%flag用以标记划线位,flag=0 表示未被划线,
%flag=1 表示有划线过,flag=2 表示为两直线交点
%ans用以记录 a 中“(0)”的位置
%循环后重新初始化flag,ans
flag = zeros(s);
ans = zeros(s);
%一次循环划线全过程,终止条件是所有的零元素均被直线覆盖,
%即在flag>0位,index=0
while(sum(sum(index)))
%按行找出“(0)”所在位置,并对“(0)”所在列划线,
%即设置flag,同时修改index,将结果填入ans
for i=1:s
t=0;
l=0;
for j=1:s
if(flag(i,j)==0&&index(i,j)==1)
l=l+1;
t=j;
end
end
if(l==1)
flag(:,t)=flag(:,t)+1;
index(:,t)=0;
ans(i,t)=1;
end
end
%按列找出“(0)”所在位置,并对“(0)”所在行划线,
%即设置flag,同时修改index,将结果填入ans
for j=1:s
t=0;
r=0;
for i=1:s
if(flag(i,j)==0&&index(i,j)==1)
r=r+1;
t=i;
end
end
if(r==1)
flag(t,:)=flag(t,:)+1;
index(t,:)=0;
ans(t,j)=1;
end
end
end %对 while(sum(sum(index)))
%处理过程
%计数器:计算ans中1的个数,用num表示
num=sum(sum(ans));
% 判断是否可以终止,若可以则跳出循环
if(s==num)
break;
end
%否则,进行下一步处理
%确定未被划线的最小元素,用m表示
m=max(max(a));
for i=1:s
for j=1:s
if(flag(i,j)==0)
if(a(i,j)<m)
m=a(i,j);
end
end
end
end
%未被划线,即flag=0处减去m;线交点,即flag=2处加上m
for i=1:s
for j=1:s
if(flag(i,j)==0)
a(i,j)=a(i,j)-m;
end
if(flag(i,j)==2)
a(i,j)=a(i,j)+m;
end
end
end
end %对while(num~=s)
%计算最优(min)值
zm=ans.*b;
z=0;
z=sum(sum(zm));
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
运行实例:
>> a=[37.7 32.9 38.8 37 35.4
43.4 33.1 42.2 34.7 41.8
33.3 28.5 38.9 30.4 33.6
29.2 26.4 29.6 28.5 31.1
0 0 0 0 0];
>> [z,ans]=fenpei(a)
z =
127.8000
ans =
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
Ⅳ 算法和软件的关系,程序员应该学习哪些算法
一.基本算法:
枚举. (poj1753,poj2965)
贪心(poj1328,poj2109,poj2586)
递归和分治法.
递推.
构造法.(poj3295)
模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996)
二.图算法:
图的深度优先遍历和广度优先遍历.
最短路径算法(dijkstra,bellman-ford,floyd,heap+dijkstra)
(poj1860,poj3259,poj1062,poj2253,poj1125,poj2240)
最小生成树算法(prim,kruskal)
(poj1789,poj2485,poj1258,poj3026)
拓扑排序 (poj1094)
二分图的最大匹配 (匈牙利算法) (poj3041,poj3020)
最大流的增广路算法(KM算法). (poj1459,poj3436)
三.数据结构.
串 (poj1035,poj3080,poj1936)
排序(快排、归并排(与逆序数有关)、堆排) (poj2388,poj2299)
简单并查集的应用.
哈希表和二分查找等高效查找法(数的Hash,串的Hash)
(poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503)
哈夫曼树(poj3253)
堆
trie树(静态建树、动态建树) (poj2513)
四.简单搜索
深度优先搜索 (poj2488,poj3083,poj3009,poj1321,poj2251)
广度优先搜索(poj3278,poj1426,poj3126,poj3087.poj3414)
简单搜索技巧和剪枝(poj2531,poj1416,poj2676,1129)
五.动态规划
背包问题. (poj1837,poj1276)
型如下表的简单DP(可参考lrj的书 page149):
E[j]=opt{D+w(i,j)} (poj3267,poj1836,poj1260,poj2533)
E[i,j]=opt{D[i-1,j]+xi,D[i,j-1]+yj,D[i-1][j-1]+zij} (最长公共子序列) (poj3176,poj1080,poj1159)
C[i,j]=w[i,j]+opt{C[i,k-1]+C[k,j]}.(最优二分检索树问题)
六.数学
组合数学:
1.加法原理和乘法原理.
2.排列组合.
3.递推关系.
(POJ3252,poj1850,poj1019,poj1942)
数论.
1.素数与整除问题
2.进制位.
3.同余模运算.
(poj2635, poj3292,poj1845,poj2115)
计算方法.
1.二分法求解单调函数相关知识.(poj3273,poj3258,poj1905,poj3122)
七.计算几何学.
几何公式.
叉积和点积的运用(如线段相交的判定,点到线段的距离等). (poj2031,poj1039)
多边型的简单算法(求面积)和相关判定(点在多边型内,多边型是否相交)
(poj1408,poj1584)
凸包. (poj2187,poj1113)
中级(校赛压轴及省赛中等难度):
一.基本算法:
C++的标准模版库的应用. (poj3096,poj3007)
较为复杂的模拟题的训练(poj3393,poj1472,poj3371,poj1027,poj2706)
二.图算法:
差分约束系统的建立和求解. (poj1201,poj2983)
最小费用最大流(poj2516,poj2516,poj2195)
双连通分量(poj2942)
强连通分支及其缩点.(poj2186)
图的割边和割点(poj3352)
最小割模型、网络流规约(poj3308)
Ⅳ 匈牙利算法 和 KM算法
是的。KM是通过巧妙的方法把带权问题归结为不带权问题。
Ⅵ 利用匈牙利算法求解指派问题的复杂度
这个可以用费用流,复杂度是O(V*E*E),V是点数,E是边数