⑴ 使用matlab粒子群算法求解以下函数,求主程序
这关键是适应度函数的问题,你可以编写如下适应度函数: F=|E(X1y1+X2y2)-0|+|D(X1y1+X2y2)-1|,F值越小越好,||指的是绝对值。 而变量你就选取X1和X2里的每个元素。比如X1=[x1,x2,x3];X2=[x4,x5,x6];你就可以设置PSO的变量为x1到x6这六个值...
⑵ 粒子群优化算法(PSO)的matlab运行程序~~谢谢大家啦!
%不知道你具体的问题是什么,下面是一个最基本的pso算法解决函数极值问题,如果是一些大型的问题,需要对速度、惯性常数、和自适应变异做进一步优化,希望对你有帮助
function y = fun(x)
y=-20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289;
%下面是主程序
%% 清空环境
clc
clear
%% 参数初始化
%粒子群算法中的两个参数
c1 = 1.49445;
c2 = 1.49445;
maxgen=200; % 进化次数
sizepop=20; %种群规模
Vmax=1;%速度限制
Vmin=-1;
popmax=5;%种群限制
popmin=-5;
%% 产生初始粒子和速度
for i=1:sizepop
%随机产生一个种群
pop(i,:)=5*rands(1,2); %初始种群
V(i,:)=rands(1,2); %初始化速度
%计算适应度
fitness(i)=fun(pop(i,:)); %染色体的适应度
end
%找最好的染色体
[bestfitness bestindex]=min(fitness);
zbest=pop(bestindex,:); %全局最佳
gbest=pop; %个体最佳
fitnessgbest=fitness; %个体最佳适应度值
fitnesszbest=bestfitness; %全局最佳适应度值
%% 迭代寻优
for i=1:maxgen
for j=1:sizepop
%速度更新
V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));
V(j,find(V(j,:)>Vmax))=Vmax;
V(j,find(V(j,:)<Vmin))=Vmin;
%种群更新
pop(j,:)=pop(j,:)+0.5*V(j,:);
pop(j,find(pop(j,:)>popmax))=popmax;
pop(j,find(pop(j,:)<popmin))=popmin;
%自适应变异(避免粒子群算法陷入局部最优)
if rand>0.8
k=ceil(2*rand);%ceil朝正无穷大方向取整
pop(j,k)=rand;
end
%适应度值
fitness(j)=fun(pop(j,:));
%个体最优更新
if fitness(j) < fitnessgbest(j)
gbest(j,:) = pop(j,:);
fitnessgbest(j) = fitness(j);
end
%群体最优更新
if fitness(j) < fitnesszbest
zbest = pop(j,:);
fitnesszbest = fitness(j);
end
end
yy(i)=fitnesszbest;
end
%% 结果分析
plot(yy)
title(['适应度曲线 ' '终止代数=' num2str(maxgen)]);
xlabel('进化代数');ylabel('适应度');
⑶ 用matlab实现粒子群优化算法的可视化模拟,跪求源代码!!!!
给你一个地址,是Mathworks公司网站上的,全球Matlab使用者将自己的代码在这里分享,这是粒子群算法PSO工具箱地址
http://www.mathworks.com/matlabcentral/fileexchange/7506-particle-swarm-optimization-toolbox
看看使用说明,用一下demo就会了,在界面的右下方有平面粒子显示
在这里你还可以搜到很多源代码,希望对你有帮助
⑷ 求粒子群算法MATLAB完整代码
%% 清空环境
clear
clc
tic
%% 参数初始化
% 粒子群算法中的两个参数
c1 = 1.49445;
c2 = 1.49445;
maxgen = 200; % 进化次数
sizepop = 20; % 种群规模
Vmax = 1;
Vmin = -1;
popmax = 5;
popmin = -5;
%% 产生初始粒子和速度
for i = 1:sizepop
% 随机产生一个种群
pop(i,:) = 5 * rands(1,2); % 初始种群
V(i,:) = rands(1,2); % 初始化速度
% 计算适应度
fitness(i) = fun(pop(i,:)); % 染色体的适应度
end
% 找最好的染色体
[bestfitness bestindex] = min(fitness);
zbest = pop(bestindex,:); % 全局最佳
gbest = pop; % 个体最佳
fitnessgbest = fitness; % 个体最佳适应度值
fitnesszbest = bestfitness; % 全局最佳适应度值
%% 迭代寻优
for i = 1:maxgen
for j = 1:sizepop
% 速度更新
V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));
V(j,find(V(j,:)>Vmax)) = Vmax;
V(j,find(V(j,:)<Vmin)) = Vmin;
%种群更新
pop(j,:) = pop(j,:) + 0.5*V(j,:);
pop(j,find(pop(j,:)>popmax)) = popmax;
pop(j,find(pop(j,:)<popmin)) = popmin;
% 自适应变异
if rand > 0.8
k = ceil(2*rand);
pop(j,k) = rand;
end
% 适应度值
fitness(j) = fun(pop(j,:));
end
% 个体最优更新
if fitness(j) < fitnessgbest(j)
gbest(j,:) = pop(j,:);
fitnessgbest(j) = fitness(j);
end
% 群体最优更新
if fitness(j) < fitnesszbest
zbest = pop(j,:);
fitnesszbest = fitness(j);
end
yy(i) = fitnesszbest;
end
toc
%% 结果分析
plot(yy);
title(['适应度曲线 ' '终止代数=' num2str(maxgen)]);
xlabel('进化代数');
ylabel('适应度');
fun函数如下
function y = fun(x)
y = -20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2)) - exp((cos(2*pi*x(1))+ cos(2*pi*x(2)))/2) + 20 + 2.71289;
⑸ 用粒子群算法求解线性约束整数规划的Matlab程序
对粒子群的约束问题涉及的比较少。这儿摘抄下网络的内容:
PSO算法推广到约束优化问题,分为两类:(http://ke..com/view/1531379.htm)
(1)罚函数法。罚函数的目的是将约束优化问题转化成无约束优化问题。
(2)将粒子群的搜索范围都限制在条件约束簇内,即在可行解范围内寻优。
第一种方法有相关论文,看了下,感觉比较适合等式约束情况,比较类似于在适应度函数中加入拉格朗日乘子的做法,如果论文下不到的话,请留言。
第二种做法倒是用过。大概讲下。
针对你的问题,初始化两维向量,但是由于存在不等式约束,所以考虑先初始化向量的第一维,然后动态算出第二维的范围,随机出第二维变量。然后就是计算适应度值,全局、局部最优。
更新过程一样,先更新第一维变量,然后动态计算第二维的范围,更新第二维,如果更新后超过了边界,则取边界值(或者也可以再次重新更新,直到满足条件,直觉上感觉第一种还好点,第二种可能会出现无法更新的情况),更新完毕后,计算适应度,更新全局、局部最优解。
补充两个链接吧
http://download.csdn.net/detail/yinjian_2004/1567342
论文:基于改进粒子群优化算法的约束多目标优化