‘壹’ A星搜索算法
A星算法是定义了一个函数f,公式为:
f = g + h
其中g函数代表目前为止从出发地到达该节点的成本,h函数是预估的当前节点到到目的地的成本,即
g(path) = path cost
h(path) = h(s) = estimated distance to goal
朝着使函数f具有最小值的路径拓展,该算法可以找到消耗最小消耗的路径
注意A星算法并不是总能找到最优解,能否找到最优解依赖于h函数,条件是
‘贰’ 搜索算法中,A算法A*算法的区别(急)
a*算法:a*(a-star)算法是一种静态路网中求解最短路径最有效的直接搜索方法。估价值与实际值越接近,估价函数取得就越好
a*
(a-star)算法是一种静态路网中求解最短路最有效的直接搜索方法。
注意是最有效的直接搜索算法。之后涌现了很多预处理算法(alt,ch,hl等等),在线查询效率是a*算法的数千甚至上万倍。
公式表示为:
f(n)=g(n)+h(n),
其中
f(n)
是从初始点经由节点n到目标点的估价函数,
g(n)
是在状态空间中从初始节点到n节点的实际代价,
h(n)
是从n到目标节点最佳路径的估计代价。
保证找到最短路径(最优解的)条件,关键在于估价函数f(n)的选取:
估价值h(n)<=
n到目标节点的距离实际值,这种情况下,搜索的点数多,搜索范围大,效率低。但能得到最优解。并且如果h(n)=d(n),即距离估计h(n)等于最短距离,那么搜索将严格沿着最短路径进行,
此时的搜索效率是最高的。
如果
估价值>实际值,搜索的点数少,搜索范围小,效率高,但不能保证得到最优解。
‘叁’ A星寻路算法和Unity自带的寻路相比有什么优势
在理解Navigation的时候,首先要明确两个知识点:
AStar:AStar是路点寻路算法中的一种,同时AStar不属于贪婪算法,贪婪算法适合动态规划,寻找局部最优解,不保证最优解。AStar是静态网格中求解最短路最有效的方法。也是耗时的算法,不宜寻路频繁的场合。一般来说适合需求精确的场合。
性能和内存占用率都还行,和启发式的搜索一样,能够根据改变网格密度、网格耗散来进行调整精确度。
A Star一般使用场景:
策略游戏的策略搜索
方块格子游戏中的格子寻路
Navigation:网格寻路算法,严格意义上它属于”拐角点算法”,效率是比较高的,但是不保证最优解算法。Navigation相对来说消耗内存更大,性能的话还不错。
Navigation一般使用场景:
游戏场景的怪物寻路
动态规避障碍
它们二者事件的实现方式和原理都不同。
AStar的话,
‘肆’ 深度优先搜索和广度优先搜索、A星算法三种算法的区别和联系
1、何谓启发式搜索算法
在说它之前先提提状态空间搜索.状态空间搜索,如果按专业点的说法就是将问题求解过程表现为从初始状态到目标状态寻找这个路径的过程.通俗点说,就是 在解一个问题时,找到一条解题的过程可以从求解的开始到问题的结果(好象并不通俗哦).由于求解问题的过程中分枝有很多,定性,不完备性造成的,使得求解的路径很多这就构成了一个图,我们说这个图就是状态空间.问题的求解实际上就是在这个图中找到一条路径可以从开始到结果.这个寻找的过程就是状态空间搜索.
常用的状态空间搜索有深度优先和广度优先.广度优先是从初始状态一层一层向下找,直到找到目标为止.深度优先是按照一定的顺序前查找完一个分支,再查找另一个分支,以至找到目标为止.这两种算法在数据结构书中都有描述,可以参看这些书得到更详细的解释.
前面说的广度和深度优先搜索有一个很大的缺陷就是他们都是在一个给定的状态空间中穷举.这在状态空间不大的情况下是很合适的算法,可是当状态空间十分大,且不预测的情况下就不可取了.他的效率实在太低,甚至不可完成.在这里就要用到启发式搜索了.
启发式搜索就是在状态空间中的搜索对每一个搜索的位置进行评估,得到最好的位置,再从这个位置进行搜索直到目标.这样可以省略大量无畏的搜索路径,提 到了效率.在启发式搜索中,对位置的估价是十分重要的.采用了不同的估价可以有不同的效果.我们先看看估价是如何表示的.
启发中的估价是用估价函数表示的,如:
f(n) = g(n) + h(n)
其中f(n) 是节点n的估价函数,g(n)实在状态空间中从初始节点到n节点的实际代价,h(n)是从n到目标节点最佳路径的估计代价.在这里主要是h(n)体现了搜 索的启发信息,因为g(n)是已知的.如果说详细点,g(n)代表了搜索的广度的优先趋势.但是当h(n) >> g(n)时,可以省略g(n),而提高效率.这些就深了,不懂也不影响啦!我们继续看看何谓A*算法.
2、初识A*算法
启发式搜索其实有很多的算法,比如:局部择优搜索法、最好优先搜索法等等.当然A*也是.这些算法都使用了启发函数,但在具体的选取最佳搜索节点时的 策略不同.象局部择优搜索法,就是在搜索的过程中选取“最佳节点”后舍弃其他的兄弟节点,父亲节点,而一直得搜索下去.这种搜索的结果很明显,由于舍弃了 其他的节点,可能也把最好的节点都舍弃了,因为求解的最佳节点只是在该阶段的最佳并不一定是全局的最佳.最好优先就聪明多了,他在搜索时,便没有舍弃节点 (除非该节点是死节点),在每一步的估价中都把当前的节点和以前的节点的估价值比较得到一个“最佳的节点”.这样可以有效的防止“最佳节点”的丢失.那么 A*算法又是一种什么样的算法呢?其实A*算法也是一种最好优先的算法.只不过要加上一些约束条件罢了.由于在一些问题求解时,我们希望能够求解出状态空 间搜索的最短路径,也就是用最快的方法求解问题,A*就是干这种事情的!我们先下个定义,如果一个估价函数可以找出最短的路径,我们称之为可采纳性.A* 算法是一个可采纳的最好优先算法.A*算法的估价函数可表示为:
f'(n) = g'(n) + h'(n)
这里,f'(n)是估价函数,g'(n)是起点到终点的最短路径值,h'(n)是n到目标的最断路经的启发值.由于这个f'(n)其实是无法预先知道 的,所以我们用前面的估价函数f(n)做近似.g(n)代替g'(n),但 g(n)>=g'(n)才可(大多数情况下都是满足的,可以不用考虑),h(n)代替h'(n),但h(n)
‘伍’ 大数据最常用的算法有哪些
奥地利符号计算研究所(Research Institute for Symbolic Computation,简称RISC)的Christoph Koutschan博士在自己的页面上发布了一篇文章,提到他做了一个调查,参与者大多数是计算机科学家,他请这些科学家投票选出最重要的算法,以下是这次调查的结果,按照英文名称字母顺序排序。
大数据等最核心的关键技术:32个算法
1、A* 搜索算法——图形搜索算法,从给定起点到给定终点计算出路径。其中使用了一种启发式的估算,为每个节点估算通过该节点的最佳路径,并以之为各个地点排定次序。算法以得到的次序访问这些节点。因此,A*搜索算法是最佳优先搜索的范例。
2、集束搜索(又名定向搜索,Beam Search)——最佳优先搜索算法的优化。使用启发式函数评估它检查的每个节点的能力。不过,集束搜索只能在每个深度中发现最前面的m个最符合条件的节点,m是固定数字——集束的宽度。
3、二分查找(Binary Search)——在线性数组中找特定值的算法,每个步骤去掉一半不符合要求的数据。
4、分支界定算法(Branch and Bound)——在多种最优化问题中寻找特定最优化解决方案的算法,特别是针对离散、组合的最优化。
5、Buchberger算法——一种数学算法,可将其视为针对单变量最大公约数求解的欧几里得算法和线性系统中高斯消元法的泛化。
6、数据压缩——采取特定编码方案,使用更少的字节数(或是其他信息承载单元)对信息编码的过程,又叫来源编码。
7、Diffie-Hellman密钥交换算法——一种加密协议,允许双方在事先不了解对方的情况下,在不安全的通信信道中,共同建立共享密钥。该密钥以后可与一个对称密码一起,加密后续通讯。
8、Dijkstra算法——针对没有负值权重边的有向图,计算其中的单一起点最短算法。
9、离散微分算法(Discrete differentiation)。
10、动态规划算法(Dynamic Programming)——展示互相覆盖的子问题和最优子架构算法
11、欧几里得算法(Euclidean algorithm)——计算两个整数的最大公约数。最古老的算法之一,出现在公元前300前欧几里得的《几何原本》。
12、期望-最大算法(Expectation-maximization algorithm,又名EM-Training)——在统计计算中,期望-最大算法在概率模型中寻找可能性最大的参数估算值,其中模型依赖于未发现的潜在变量。EM在两个步骤中交替计算,第一步是计算期望,利用对隐藏变量的现有估计值,计算其最大可能估计值;第二步是最大化,最大化在第一步上求得的最大可能值来计算参数的值。
13、快速傅里叶变换(Fast Fourier transform,FFT)——计算离散的傅里叶变换(DFT)及其反转。该算法应用范围很广,从数字信号处理到解决偏微分方程,到快速计算大整数乘积。
14、梯度下降(Gradient descent)——一种数学上的最优化算法。
15、哈希算法(Hashing)。
16、堆排序(Heaps)。
17、Karatsuba乘法——需要完成上千位整数的乘法的系统中使用,比如计算机代数系统和大数程序库,如果使用长乘法,速度太慢。该算法发现于1962年。
18、LLL算法(Lenstra-Lenstra-Lovasz lattice rection)——以格规约(lattice)基数为输入,输出短正交向量基数。LLL算法在以下公共密钥加密方法中有大量使用:背包加密系统(knapsack)、有特定设置的RSA加密等等。
19、最大流量算法(Maximum flow)——该算法试图从一个流量网络中找到最大的流。它优势被定义为找到这样一个流的值。最大流问题可以看作更复杂的网络流问题的特定情况。最大流与网络中的界面有关,这就是最大流-最小截定理(Max-flow min-cut theorem)。Ford-Fulkerson 能找到一个流网络中的最大流。
20、合并排序(Merge Sort)。
21、牛顿法(Newton’s method)——求非线性方程(组)零点的一种重要的迭代法。
22、Q-learning学习算法——这是一种通过学习动作值函数(action-value function)完成的强化学习算法,函数采取在给定状态的给定动作,并计算出期望的效用价值,在此后遵循固定的策略。Q-leanring的优势是,在不需要环境模型的情况下,可以对比可采纳行动的期望效用。
23、两次筛法(Quadratic Sieve)——现代整数因子分解算法,在实践中,是目前已知第二快的此类算法(仅次于数域筛法Number Field Sieve)。对于110位以下的十位整数,它仍是最快的,而且都认为它比数域筛法更简单。
24、RANSAC——是“RANdom SAmple Consensus”的缩写。该算法根据一系列观察得到的数据,数据中包含异常值,估算一个数学模型的参数值。其基本假设是:数据包含非异化值,也就是能够通过某些模型参数解释的值,异化值就是那些不符合模型的数据点。
25、RSA——公钥加密算法。首个适用于以签名作为加密的算法。RSA在电商行业中仍大规模使用,大家也相信它有足够安全长度的公钥。
26、Sch?nhage-Strassen算法——在数学中,Sch?nhage-Strassen算法是用来完成大整数的乘法的快速渐近算法。其算法复杂度为:O(N log(N) log(log(N))),该算法使用了傅里叶变换。
27、单纯型算法(Simplex Algorithm)——在数学的优化理论中,单纯型算法是常用的技术,用来找到线性规划问题的数值解。线性规划问题包括在一组实变量上的一系列线性不等式组,以及一个等待最大化(或最小化)的固定线性函数。
28、奇异值分解(Singular value decomposition,简称SVD)——在线性代数中,SVD是重要的实数或复数矩阵的分解方法,在信号处理和统计中有多种应用,比如计算矩阵的伪逆矩阵(以求解最小二乘法问题)、解决超定线性系统(overdetermined linear systems)、矩阵逼近、数值天气预报等等。
29、求解线性方程组(Solving a system of linear equations)——线性方程组是数学中最古老的问题,它们有很多应用,比如在数字信号处理、线性规划中的估算和预测、数值分析中的非线性问题逼近等等。求解线性方程组,可以使用高斯—约当消去法(Gauss-Jordan elimination),或是柯列斯基分解( Cholesky decomposition)。
30、Strukturtensor算法——应用于模式识别领域,为所有像素找出一种计算方法,看看该像素是否处于同质区域( homogenous region),看看它是否属于边缘,还是是一个顶点。
31、合并查找算法(Union-find)——给定一组元素,该算法常常用来把这些元素分为多个分离的、彼此不重合的组。不相交集(disjoint-set)的数据结构可以跟踪这样的切分方法。合并查找算法可以在此种数据结构上完成两个有用的操作:
查找:判断某特定元素属于哪个组。
合并:联合或合并两个组为一个组。
32、维特比算法(Viterbi algorithm)——寻找隐藏状态最有可能序列的动态规划算法,这种序列被称为维特比路径,其结果是一系列可以观察到的事件,特别是在隐藏的Markov模型中。
以上就是Christoph博士对于最重要的算法的调查结果。你们熟悉哪些算法?又有哪些算法是你们经常使用的?
‘陆’ A*搜寻算法的算法描述
f(x) = g(x) + h(x)
function A*(start,goal)
var closed := the empty set
var q := make_queue(path(start))
while q is not empty
var p := remove_first(q)
var x := the last node of p
if x in closed
continue
if x = goal
return p
add x to closed
foreach y in successors(x)
enqueue(q, p, y)
return failure A*改变它自己行为的能力基于启发式代价函数,启发式函数在游戏中非常有用。在速度和精确度之间取得折衷将会让你的游戏运行得更快。在很多游戏中,你并不真正需要得到最好的路径,仅需要近似的就足够了。而你需要什么则取决于游戏中发生着什么,或者运行游戏的机器有多快。假设你的游戏有两种地形,平原和山地,在平原中的移动代价是1而在山地的是3,那么A星算法就会认为在平地上可以进行三倍于山地的距离进行等价搜寻。 这是因为有可能有一条沿着平原到山地的路径。把两个邻接点之间的评估距离设为1.5可以加速A*的搜索过程。然后A*会将3和1.5比较,这并不比把3和1比较差。然而,在山地上行动有时可能会优于绕过山脚下进行行动。所以花费更多时间寻找一个绕过山的算法并不经常是可靠的。 同样的,想要达成这样的目标,你可以通过减少在山脚下的搜索行为来打到提高A星算法的运行速率。弱项如此可以将A星算法的山地行动耗费从3调整为2即可。这两种方法都会给出可靠地行动策略 。
‘柒’ 如何基于Cocos2d-x v3.x实现A星寻路算法
实现A星算法
根据算法,第一步是添加当前坐标到open列表。还需要三个辅助方法:
- 一个方法用来插入一个ShortestPathStep对象到适当的位置(有序的F值)
- 一个方法用来计算从一个方块到相邻方块的移动数值
- 一个方法是根据"曼哈顿距离"算法,计算方块的H值
打开CatSprite.cpp文件,添加如下方法:
void CatSprite::insertInOpenSteps(CatSprite::ShortestPathStep *step)
{
int stepFScore = step->getFScore();
ssize_t count = _spOpenSteps.size();
ssize_t i = 0;
for (; i < count; ++i)
{
if (stepFScore <= _spOpenSteps.at(i)->getFScore())
{
break;
}
}
_spOpenSteps.insert(i, step);
}
int CatSprite::computeHScoreFromCoordToCoord(const Point &fromCoord, const Point &toCoord)
{
// 这里使用曼哈顿方法,计算从当前步骤到达目标步骤,在水平和垂直方向总的步数
// 忽略了可能在路上的各种障碍
return abs(toCoord.x - fromCoord.x) + abs(toCoord.y - fromCoord.y);
}
int CatSprite::(const ShortestPathStep *fromStep, const ShortestPathStep *toStep)
{
// 因为不能斜着走,而且由于地形就是可行走和不可行走的成本都是一样的
// 如果能够对角移动,或者有沼泽、山丘等等,那么它必须是不同的
return 1;
}
接下来,需要一个方法去获取给定方块的所有相邻可行走方块。因为在这个游戏中,HelloWorld管理着地图,所以在那里添加方法。打开HelloWorldScene.cpp文件,添加如下方法:
PointArray *HelloWorld::(const Point &tileCoord) const
{
PointArray *tmp = PointArray::create(4);
// 上
Point p(tileCoord.x, tileCoord.y - 1);
if (this->isValidTileCoord(p) && !this->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
// 左
p.setPoint(tileCoord.x - 1, tileCoord.y);
if (this->isValidTileCoord(p) && !this->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
// 下
p.setPoint(tileCoord.x, tileCoord.y + 1);
if (this->isValidTileCoord(p) && !this->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
// 右
p.setPoint(tileCoord.x + 1, tileCoord.y);
if (this->isValidTileCoord(p) && !this->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
return tmp;
}
可以继续CatSprite.cpp中的moveToward方法了,在moveToward方法的后面,添加如下代码:
bool pathFound = false;
_spOpenSteps.clear();
_spClosedSteps.clear();
// 首先,添加猫的方块坐标到open列表
this->insertInOpenSteps(ShortestPathStep::createWithPosition(fromTileCoord));
do
{
// 得到最小的F值步骤
// 因为是有序列表,第一个步骤总是最小的F值
ShortestPathStep *currentStep = _spOpenSteps.at(0);
// 添加当前步骤到closed列表
_spClosedSteps.pushBack(currentStep);
// 将它从open列表里面移除
// 需要注意的是,如果想要先从open列表里面移除,应小心对象的内存
_spOpenSteps.erase(0);
// 如果当前步骤是目标方块坐标,那么就完成了
if (currentStep->getPosition() == toTileCoord)
{
pathFound = true;
ShortestPathStep *tmpStep = currentStep;
CCLOG("PATH FOUND :");
do
{
CCLOG("%s", tmpStep->getDescription().c_str());
tmpStep = tmpStep->getParent(); // 倒退
} while (tmpStep); // 直到没有上一步
_spOpenSteps.clear();
_spClosedSteps.clear();
break;
}
// 得到当前步骤的相邻方块坐标
PointArray *adjSteps = _layer->(currentStep->getPosition());
for (ssize_t i = 0; i < adjSteps->count(); ++i)
{
ShortestPathStep *step = ShortestPathStep::createWithPosition(adjSteps->getControlPointAtIndex(i));
// 检查步骤是不是已经在closed列表
if (this->getStepIndex(_spClosedSteps, step) != -1)
{
continue;
}
// 计算从当前步骤到此步骤的成本
int moveCost = this->(currentStep, step);
// 检查此步骤是否已经在open列表
ssize_t index = this->getStepIndex(_spOpenSteps, step);
// 不在open列表,添加它
if (index == -1)
{
// 设置当前步骤作为上一步操作
step->setParent(currentStep);
// G值等同于上一步的G值 + 从上一步到这里的成本
step->setGScore(currentStep->getGScore() + moveCost);
// H值即是从此步骤到目标方块坐标的移动量估算值
step->setHScore(this->computeHScoreFromCoordToCoord(step->getPosition(), toTileCoord));
// 按序添加到open列表
this->insertInOpenSteps(step);
}
else
{
// 获取旧的步骤,其值已经计算过
step = _spOpenSteps.at(index);
// 检查G值是否低于当前步骤到此步骤的值
if ((currentStep->getGScore() + moveCost) < step->getGScore())
{
// G值等同于上一步的G值 + 从上一步到这里的成本
step->setGScore(currentStep->getGScore() + moveCost);
// 因为G值改变了,F值也会跟着改变
// 所以为了保持open列表有序,需要将此步骤移除,再重新按序插入
// 在移除之前,需要先保持引用
step->retain();
// 现在可以放心移除,不用担心被释放
_spOpenSteps.erase(index);
// 重新按序插入
this->insertInOpenSteps(step);
// 现在可以释放它了,因为open列表应该持有它
step->release();
}
}
}
} while (_spOpenSteps.size() > 0);
if (!pathFound)
{
SimpleAudioEngine::getInstance()->playEffect("hitWall.wav");
}
添加以下方法:
ssize_t CatSprite::getStepIndex(const cocos2d::Vector<CatSprite::ShortestPathStep *> &steps, const CatSprite::ShortestPathStep *step)
{
for (ssize_t i = 0; i < steps.size(); ++i)
{
if (steps.at(i)->isEqual(step))
{
return i;
}
}
return -1;
}
‘捌’ 什么是A搜索算法
A*搜索算法,俗称A星算法,作为启发式搜索算法中的一种,这是一种在图形平面上,有多个节点的路径,求出最低通过成本的算法。常用于游戏中的NPC的移动计算,或线上游戏的BOT的移动计算上。该算法像Dijkstra算法一样,可以找到一条最短路径;也像BFS一样,进行启发式的搜索。
‘玖’ A*算法介绍
姓名:车文扬 学号:16020199006
【嵌牛导读】:A*算法的逐步详解
【嵌牛鼻子】:启发式算法
【嵌牛提问】:A*算法的原理是什么?
【嵌牛正文】:
A*算法
路径规划是指的是机器人的最优路径规划问题,即依据某个或某些优化准则(如工作代价最小、行走路径最短、行走时间最短等),在工作空间中找到一个从起始状态到目标状态能避开障碍物的最优路径。机器人的路径规划应用场景极丰富,最常见如游戏中NPC及控制角色的位置移动,网络地图等导航问题,小到家庭扫地机器人、无人机大到各公司正争相开拓的无人驾驶汽车等。
目前路径规划算法分为:
A*算法原理:
在计算机科学中,A*算法作为Dijkstra算法的扩展,因其高效性而被广泛应用于寻路及图的遍历,如星际争霸等游戏中就大量使用。在理解算法前,我们需要知道几个概念:
搜索区域(The Search Area):图中的搜索区域被划分为了简单的二维数组,数组每个元素对应一个小方格,当然我们也可以将区域等分成是五角星,矩形等,通常将一个单位的中心点称之为搜索区域节点(Node)。
开放列表(Open List):我们将路径规划过程中待检测的节点存放于Open List中,而已检测过的格子则存放于Close List中。
父节点(parent):在路径规划中用于回溯的节点,开发时可考虑为双向链表结构中的父结点指针。
路径排序(Path Sorting):具体往哪个节点移动由以下公式确定:F(n) = G + H 。G代表的是从初始位置A沿着已生成的路径到指定待检测格子的移动开销。H指定待测格子到目标节点B的估计移动开销。
启发函数(Heuristics Function):H为启发函数,也被认为是一种试探,由于在找到唯一路径前,我们不确定在前面会出现什么障碍物,因此用了一种计算H的算法,具体根据实际场景决定。在我们简化的模型中,H采用的是传统的曼哈顿距离(Manhattan Distance),也就是横纵向走的距离之和。
如下图所示,绿色方块为机器人起始位置A,红色方块为目标位置B,蓝色为障碍物。
我们把要搜寻的区域划分成了正方形的格子。这是寻路的第一步,简化搜索区域。这个特殊的方法把我们的搜索区域简化为了2 维数组。数组的每一项代表一个格子,它的状态就是可走(walkalbe)或不可走(unwalkable) 。现用A*算法寻找出一条自A到B的最短路径,每个方格的边长为10,即垂直水平方向移动开销为10。因此沿对角移动开销约等于14。具体步骤如下:
从起点 A 开始,把它加入到一个由方格组成的open list(开放列表) 中,这个open list像是一个购物清单。Open list里的格子是可能会是沿途经过的,也有可能不经过。因此可以将其看成一个待检查的列表。查看与A相邻的8个方格 ,把其中可走的 (walkable) 或可到达的(reachable) 方格加入到open list中。并把起点 A 设置为这些方格的父节点 (parent node) 。然后把 A 从open list中移除,加入到close list(封闭列表) 中,close list中的每个方格都是不需要再关注的。
如下图所示,深绿色的方格为起点A,它的外框是亮蓝色,表示该方格被加入到了close list 。与它相邻的黑色方格是需要被检查的,他们的外框是亮绿色。每个黑方格都有一个灰色的指针指向他们的父节点A。
下一步,我们需要从open list中选一个与起点A相邻的方格。但是到底选择哪个方格好呢?选F值最小的那个。我们看看下图中的一些方格。在标有字母的方格中G = 10 。这是因为水平方向从起点到那里只有一个方格的距离。与起点直接相邻的上方,下方,左方的方格的G 值都是10 ,对角线的方格G 值都是14 。H值通过估算起点到终点( 红色方格) 的Manhattan 距离得到,仅作横向和纵向移动,并且忽略沿途的障碍。使用这种方式,起点右边的方格到终点有3 个方格的距离,因此H = 30 。这个方格上方的方格到终点有4 个方格的距离( 注意只计算横向和纵向距离) ,因此H = 40 。
比较open list中节点的F值后,发现起点A右侧节点的F=40,值最小。选作当前处理节点,并将这个点从Open List删除,移到Close List中。
对这个节点周围的8个格子进行判断,若是不可通过(比如墙,水,或是其他非法地形)或已经在Close List中,则忽略。否则执行以下步骤:
若当前处理节点的相邻格子已经在Open List中,则检查这条路径是否更优,即计算经由当前处理节点到达那个方格是否具有更小的 G值。如果没有,不做任何操作。相反,如果G值更小,则把那个方格的父节点设为当前处理节点 ( 我们选中的方格 ) ,然后重新计算那个方格的 F 值和 G 值。
若当前处理节点的相邻格子不在Open List中,那么把它加入,并将它的父节点设置为该节点。
按照上述规则我们继续搜索,选择起点右边的方格作为当前处理节点。它的外框用蓝线打亮,被放入了close list 中。然后我们检查与它相邻的方格。它右侧的3个方格是墙壁,我们忽略。它左边的方格是起点,在close list 中,我们也忽略。其他4个相邻的方格均在open list 中,我们需要检查经由当前节点到达那里的路径是否更好。我们看看上面的方格,它现在的G值为14 ,如果经由当前方格到达那里,G值将会为20( 其中10为从起点到达当前方格的G值,此外还要加上从当前方格纵向移动到上面方格的G值10) ,因此这不是最优的路径。看图就会明白直接从起点沿对角线移动到那个方格比先横向移动再纵向移动要好。
当把4个已经在open list 中的相邻方格都检查后,没有发现经由当前节点的更好路径,因此不做任何改变。接下来要选择下一个待处理的节点。因此再次遍历open list ,现在open list中只有7 个方格了,我们需要选择F值最小的那个。这次有两个方格的F值都是54,选哪个呢?没什么关系。从速度上考虑,选择最后加入open list 的方格更快。因此选择起点右下方的方格,如下图所示。
接下来把起点右下角F值为54的方格作为当前处理节点,检查其相邻的方格。我们发现它右边是墙(墙下面的一格也忽略掉,假定墙角不能直接穿越),忽略之。这样还剩下 5 个相邻的方格。当前方格下面的 2 个方格还没有加入 open list ,所以把它们加入,同时把当前方格设为他们的父亲。在剩下的 3 个方格中,有 2 个已经在 close list 中 ( 一个是起点,一个是当前方格上面的方格,外框被加亮的 ) ,我们忽略它们。最后一个方格,也就是当前方格左边的方格,检查经由当前方格到达那里是否具有更小的 G 值。没有,因此我们准备从 open list 中选择下一个待处理的方格。
不断重复这个过程,直到把终点也加入到了open list 中,此时如下图所示。注意在起点下方2 格处的方格的父亲已经与前面不同了。之前它的G值是28并且指向它右上方的方格。现在它的G 值为20 ,并且指向它正上方的方格。这是由于在寻路过程中的某处使用新路径时G值更小,因此父节点被重新设置,G和F值被重新计算。
那么我们怎样得到实际路径呢?很简单,如下图所示,从终点开始,沿着箭头向父节点移动,直至回到起点,这就是你的路径。
A*算法总结:
1. 把起点加入 open list 。
2. 重复如下过程:
a. 遍历open list ,查找F值最小的节点,把它作为当前要处理的节点,然后移到close list中
b. 对当前方格的 8 个相邻方格一一进行检查,如果它是不可抵达的或者它在close list中,忽略它。否则,做如下操作:
□ 如果它不在open list中,把它加入open list,并且把当前方格设置为它的父亲
□ 如果它已经在open list中,检查这条路径 ( 即经由当前方格到达它那里 ) 是否更近。如果更近,把它的父亲设置为当前方格,并重新计算它的G和F值。如果你的open list是按F值排序的话,改变后你可能需要重新排序。
c. 遇到下面情况停止搜索:
□ 把终点加入到了 open list 中,此时路径已经找到了,或者
□ 查找终点失败,并且open list 是空的,此时没有路径。
3. 从终点开始,每个方格沿着父节点移动直至起点,形成路径。
‘拾’ 如何实现A星寻路算法 Cocos2d-x 3.0 beta2
操作步骤如下:一win764位系统搭建android开发环境需要的软件1.cocos2d-x3.3beta02.VisualStudio2012/2013安装完占硬盘空间近10G,VisualStudio2012/2013是需要注册码。4.AndroidSDK(其中包括Eclipse)5.AndroidNDK6.Ant7.Python2.7.8不要下载3.x以上版本二软件安装安装软件时不要安装在C盘。1.VisualStudio2012/2013VisualStudio2012/2013安装方法像安装其他软件一样,一路下一步就可以,但是注意安装前IE浏览器版本必须是IE10以上版本。2.Python2.7.8安装方法同上,但是不要安装在C盘。3.JAVAJDKJAVAJDK默认安装,这个可以安装在C盘。4.cocos2d-x3.3beta0 AndroidSDK AndroidNDK Ant这些软件都是解压包,不需要安装,解压就可以。三cocos2d-x3.3beta0环境调试1.打开cocos2d-x3.3beta0所在的文件[attachment=78978]按Shift+鼠标右键,点在此次打开命令窗口。现在可以看见画黄线的是软件变量名称,红线是变量路径。正常的是4个变量名称4条变量路径,如果不是就需要手动添加,方法如下:1.右键计算机(XP叫我的电脑,win7叫计算机)------2.属性------3.高级系统设置------4.环境变量------5.新建6.在变量名中添加缺少的变量名,在变量值中添加路径。如:变量名NDK_ROOT 变量值D:\android-ndk-r10b软件名称 变量名cocos2d-x3.3beta0 COCOS_CONSOLE_ROOTAndroidSDK ANDROID_SDK_ROOTAndroidNDK NDK_ROOTAnt ANT_ROOT再次.打开cocos2d-x3.3beta0所在的文件,按Shift+鼠标右键,点在此次打开命令窗口。如果看到4个变量名称4条变量路径就说明变量调试正确。四创建项目1.打开cocos2d-x3.3beta0所在的文件,按Shift+鼠标右键,点在此次打开命令窗口。2.键入setup.py回车3.键入cocosnew项目名称-p包名-l语言cpp-d项目路径如:cocosnewtest-ptiaoshi-lcpp-d/test/android/cheshi会在存放cocos2d-x3.3beta0的盘符里出现一个名称为tset的文件,打开文件-----proj.win32-----TSET.sin在VisualStudio2013中点 调试------开始执行不调试