‘壹’ 每个编译器都不一样么 c语言一般用什么编译器 每次一种编译器不能编译 另一种却能编译出
编译器就是c语言编译成二进制的东西,
不同的编译器是不同的,
比如16位系统和32位系统的编译器就不同,因为16位的认为int是2字节,32位的则认为是4个字节。
另外
linux上的编译器跟windows下的编译器也不同,linux上的认为内核空间占1G,而windows下则认为占2G,
此外两个系统对环境变量以及其他的设置也不同所以编译器更不能用。
而且不同的CPU的指令集时不同的,所以同样int
a
=1
最后被编译成的二进制代码也是不同的。
C语言的编译器有很多,windows下的编译器也有很多,不同的编译器可能会做一些不同的优化,linux下的gcc也可以添加选项让他编译windows下运行的程序。
main(int
argc,char*argv[
】
)
argc
是你的参数个数
argv是你的参数。
比如你最终程序叫
add
那么
你在命令行执行add
1
2
那么argc
=3
第一个参数使你的add,
第二个第三个就是
1
2,
在函数内部你就可以获取这俩参数进行相加然后打印
visual
是个IDE,集成开发环境,已经集成好了windows下使用的编译器连接器
等,
编写代码完成后直接点击编译就行了。
IDE的默认编译器是可以更改的,不同的IDE设置不同。
‘贰’ Linux 内核编译时出现 “设备上没有空间”,该如何进行重新定义空间
1)你编译的分区空间不足了,你换一个容量大的分区进行编译即可。
可以用df -h 查看各挂载分区的容量
2)分区用fdisk命令进行
具体可以参考《鸟哥的Linux私房菜_基础学习篇_第三版》
‘叁’ linux 编译内核 空间不够怎么办我分给linux的盘只有8G
8g按理够了,如果不行,可以卸载一些不用软件,也可以动态加载内核。
如果你是学习linux内核,建议不要覆盖内核,这样新的不行还可以用旧的,如果是单纯的使用,可以覆盖。
‘肆’ ubuntu 内核编译时文件系统空间不足怎么办啊,具体如何操作
编译内核又用不了多少空间,空间不足就清理出空间来不就得了,删掉大概2G东西够暂时用的
如果你用得是虚拟机,扩展硬盘容量就行了,或者增加一个硬盘挂载上去,在新增加得空间里执行编译就行了
‘伍’ Ubuntu编译了新的内核,进入新内核时一直显示载入Linux 5.6.7,载入初始化内存盘咋回事
概述====1)当内核配置了内存盘时, 内核在初始化时可以将软盘加载到内存盘中作为根盘.当同时配置了初始化内存盘(Initail RAM Disk)时, 内核在初始化时可以在安装主盘之前,通过引导程序所加载的initrd文件建立一个内存初始化盘, 首先将它安装成根文件系统, 然后执行其根目录下的linuxrc 文件,可用于在安装主盘之前加载一些内核模块. 等到linuxrc 程序退出后, 再将主盘安装成根文件系统,并将内存初始化盘转移安装到其/initrd目录下.2)当主盘就是initrd所生成的内存初始化盘时, 不再进行重新安装,在DOS下用loadlin加载的抢救盘就是这种工作方式.3)引导程序所加载的initrd为文件系统的映象文件, 可以是gzip压缩的, 也可以是不压缩的.能够识别的文件系统有minix,ext2,romfs三种.4)当内核的根盘为软盘时,内核初始化时会测试软盘的指定部位是否存在文件系统或压缩文件映象, 然后将之加载或解压到内存盘中作为根盘. 这是单张抢救软盘的工作方式.有关代码========; init/main.c#ifdef CONFIG_BLK_DEV_INITRDkdev_t real_root_dev; 启动参数所设定的根盘设备#endifasmlinkage void __init start_kernel(void){ char * command_line; unsigned long mempages; extern char saved_command_line[]; lock_kernel(); printk(linux_banner); setup_arch(&command_line);arch/i386/kernel/setup.c中,初始化initrd_start和initrd_end两个变量 ...#ifdef CONFIG_BLK_DEV_INITRD if (initrd_start && !initrd_below_start_ok && initrd_start < min_low_pfn << PAGE_SHIFT) { ; min_low_pfn为内核末端_end所开始的物理页号,initrd_start,initrd_end在rd.c中定义 printk(KERN_CRIT "initrd overwritten (0x%08lx < 0x%08lx) - " "disabling it./n",initrd_start,min_low_pfn << PAGE_SHIFT); initrd_start = 0; }#endif ... kernel_thread(init, NULL, CLONE_FS | CLONE_FILES | CLONE_SIGNAL); 创建init进程 unlock_kernel(); current->need_resched = 1; cpu_idle();}static int init(void * unused){ lock_kernel(); do_basic_setup(); /* * Ok, we have completed the initial bootup, and * we're essentially up and running. Get rid of the * initmem segments and start the user-mode stuff.. */ free_initmem(); unlock_kernel(); if (open("/dev/console", O_RDWR, 0) < 0) printk("Warning: unable to open an initial console./n"); (void) p(0); (void) p(0); /* * We try each of these until one succeeds. * * The Bourne shell can be used instead of init if we are * trying to recover a really broken machine. */ if (execute_command) execve(execute_command,argv_init,envp_init); execve("/sbin/init",argv_init,envp_init); execve("/etc/init",argv_init,envp_init); execve("/bin/init",argv_init,envp_init); execve("/bin/sh",argv_init,envp_init); panic("No init found. Try passing init= option to kernel.");}static void __init do_basic_setup(void){#ifdef CONFIG_BLK_DEV_INITRD int real_root_mountflags;#endif ...#ifdef CONFIG_BLK_DEV_INITRD real_root_dev = ROOT_DEV; ROOT_DEV为所请求根文件系统的块设备 real_root_mountflags = root_mountflags; if (initrd_start && mount_initrd) root_mountflags &= ~MS_RDONLY; else mount_initrd =0; #endif start_context_thread(); do_initcalls(); 会调用partition_setup()中加载内存盘 /* .. filesystems .. */ filesystem_setup(); /* Mount the root filesystem.. */ mount_root(); mount_devfs_fs ();#ifdef CONFIG_BLK_DEV_INITRD root_mountflags = real_root_mountflags; if (mount_initrd && ROOT_DEV != real_root_dev && MAJOR(ROOT_DEV) == RAMDISK_MAJOR && MINOR(ROOT_DEV) == 0) { ; 如果当前根盘为initrd所建立的内存盘 int error; int i, pid; pid = kernel_thread(do_linuxrc, "/linuxrc", SIGCHLD); 创建新的任务去执行程序/linuxrc if (pid>0) while (pid != wait(&i)); 等待linuxrc进程退出 if (MAJOR(real_root_dev) != RAMDISK_MAJOR || MINOR(real_root_dev) != 0) { ; 如果原来的根盘不是0号内存盘,则使用原来的根文件系统, ; 并且将内存盘转移到其/initrd目录下 error = change_root(real_root_dev,"/initrd"); if (error) printk(KERN_ERR "Change root to /initrd: " "error %d/n",error); } }#endif}#ifdef CONFIG_BLK_DEV_INITRDstatic int do_linuxrc(void * shell){ static char *argv[] = { "linuxrc", NULL, }; close(0);close(1);close(2); setsid(); 设置新的session号 (void) open("/dev/console",O_RDWR,0); (void) p(0); (void) p(0); return execve(shell, argv, envp_init);}#endif; arch/i386/kernel/setup.c#define RAMDISK_IMAGE_START_MASK 0x07FF#define RAMDISK_PROMPT_FLAG 0x8000#define RAMDISK_LOAD_FLAG 0x4000 #define PARAM ((unsigned char *)empty_zero_page)#define RAMDISK_FLAGS (*(unsigned short *) (PARAM+0x1F8)) 可用rdev设置的参数#define LOADER_TYPE (*(unsigned char *) (PARAM+0x210))#define INITRD_START (*(unsigned long *) (PARAM+0x218)) 初始化盘映象起始物理地址#define INITRD_SIZE (*(unsigned long *) (PARAM+0x21c)) 初始化盘字节数void __init setup_arch(char **cmdline_p){ ...#ifdef CONFIG_BLK_DEV_RAM rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK; 以块为单位 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0); rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);#endif ...#ifdef CONFIG_BLK_DEV_INITRD if (LOADER_TYPE && INITRD_START) { if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) { ; max_low_pfn表示内核空间1G范围以下最大允许的物理页号 reserve_bootmem(INITRD_START, INITRD_SIZE); initrd_start = INITRD_START ? INITRD_START + PAGE_OFFSET : 0; 转变为内核逻辑地址 initrd_end = initrd_start+INITRD_SIZE; } else { printk("initrd extends beyond end of memory " "(0x%08lx > 0x%08lx)/ndisabling initrd/n", INITRD_START + INITRD_SIZE, max_low_pfn << PAGE_SHIFT); initrd_start = 0; } }#endif ...}; fs/partitions/check.c:int __init partition_setup(void){ device_init(); 包含ramdisk设备的初始化#ifdef CONFIG_BLK_DEV_RAM#ifdef CONFIG_BLK_DEV_INITRD if (initrd_start && mount_initrd) initrd_load(); ;如果启动时加载了initrd文件,则用它去初始化根内存盘 else#endif rd_load(); 如果内核配置了内存盘并且根盘指定为软盘则试图将软盘加载为根内存盘#endif return 0;}__initcall(partition_setup);; drivers/block/rd.c:int rd_doload; /* 1 = load RAM disk, 0 = don't load */int rd_prompt = 1; /* 1 = prompt for RAM disk, 0 = don't prompt */int rd_image_start; /* starting block # of image */#ifdef CONFIG_BLK_DEV_INITRDunsigned long initrd_start, initrd_end;int mount_initrd = 1; /* zero if initrd should not be mounted */int initrd_below_start_ok;void __init rd_load(void){ rd_load_disk(0); 加载到0号内存盘}void __init rd_load_secondary(void){ rd_load_disk(1); 加载到1号内存盘}static void __init rd_load_disk(int n){#ifdef CONFIG_BLK_DEV_INITRD extern kdev_t real_root_dev;#endif if (rd_doload == 0) return; if (MAJOR(ROOT_DEV) != FLOPPY_MAJOR 如果根盘是不软盘#ifdef CONFIG_BLK_DEV_INITRD && MAJOR(real_root_dev) != FLOPPY_MAJOR#endif ) return; if (rd_prompt) {#ifdef CONFIG_BLK_DEV_FD floppy_eject();#endif#ifdef CONFIG_MAC_FLOPPY if(MAJOR(ROOT_DEV) == FLOPPY_MAJOR) swim3_fd_eject(MINOR(ROOT_DEV)); else if(MAJOR(real_root_dev) == FLOPPY_MAJOR) swim3_fd_eject(MINOR(real_root_dev));#endif printk(KERN_NOTICE "VFS: Insert root floppy disk to be loaded into RAM disk and press ENTER/n"); wait_for_keypress(); } rd_load_image(ROOT_DEV,rd_image_start, n); 将根软盘加载到n号内存盘}void __init initrd_load(void){ ; 使用initrd设备盘作为源盘去建立内存根盘 rd_load_image(MKDEV(MAJOR_NR, INITRD_MINOR),rd_image_start,0);}static void __init rd_load_image(kdev_t device, int offset, int unit){ struct inode *inode, *out_inode; struct file infile, outfile; struct dentry in_dentry, out_dentry; mm_segment_t fs; kdev_t ram_device; int nblocks, i; char *buf; unsigned short rotate = 0; unsigned short devblocks = 0; char rotator[4] = { '|' , '/' , '-' , '//' }; ram_device = MKDEV(MAJOR_NR, unit); 建立输出内存盘设备号 if ((inode = get_empty_inode()) == NULL) return; memset(&infile, 0, sizeof(infile)); memset(&in_dentry, 0, sizeof(in_dentry)); infile.f_mode = 1; /* read only */ infile.f_dentry = &in_dentry; in_dentry.d_inode = inode; infile.f_op = &def_blk_fops; init_special_inode(inode, S_IFBLK | S_IRUSR, kdev_t_to_nr(device)); if ((out_inode = get_empty_inode()) == NULL) goto free_inode; memset(&outfile, 0, sizeof(outfile)); memset(&out_dentry, 0, sizeof(out_dentry)); outfile.f_mode = 3; /* read/write */ outfile.f_dentry = &out_dentry; out_dentry.d_inode = out_inode; outfile.f_op = &def_blk_fops; init_special_inode(out_inode, S_IFBLK | S_IRUSR | S_IWUSR, kdev_t_to_nr(ram_device)); if (blkdev_open(inode, &infile) != 0) 打开输入盘文件 goto free_inode; if (blkdev_open(out_inode, &outfile) != 0) 打开输出内存盘文件 goto free_inodes; fs = get_fs(); set_fs(KERNEL_DS); nblocks = identify_ramdisk_image(device, &infile, offset); 鉴定输入盘的文件类型 if (nblocks < 0) 出错 goto done; if (nblocks == 0) { 表示输入盘是gzip文件#ifdef BUILD_CRAMDISK if (crd_load(&infile, &outfile) == 0) 将输入盘文件解压到输出盘文件中去 goto successful_load;#else printk(KERN_NOTICE "RAMDISK: Kernel does not support compressed " "RAM disk images/n");#endif goto done; } /* * NOTE NOTE: nblocks suppose that the blocksize is BLOCK_SIZE, so * rd_load_image will work only with filesystem BLOCK_SIZE wide! * So make sure to use 1k blocksize while generating ext2fs * ramdisk-images. */ if (nblocks > (rd_length[unit] >> BLOCK_SIZE_BITS)) { ; 如果输入盘的尺寸超过了输出内存盘的允许尺寸 printk("RAMDISK: image too big! (%d/%ld blocks)/n", nblocks, rd_length[unit] >> BLOCK_SIZE_BITS); goto done; } /* * OK, time to in the data */ buf = kmalloc(BLOCK_SIZE, GFP_KERNEL); if (buf == 0) { printk(KERN_ERR "RAMDISK: could not allocate buffer/n"); goto done; } if (blk_size[MAJOR(device)]) devblocks = blk_size[MAJOR(device)][MINOR(device)]; 取输入盘的容量#ifdef CONFIG_BLK_DEV_INITRD if (MAJOR(device) == MAJOR_NR && MINOR(device) == INITRD_MINOR) devblocks = nblocks; 如果输入是初始化内存盘,则盘的容量为它的实际尺寸#endif if (devblocks == 0) { printk(KERN_ERR "RAMDISK: could not determine device size/n"); goto done; } printk(KERN_NOTICE "RAMDISK: Loading %d blocks [%d disk%s] into ram disk... ", nblocks, ((nblocks-1)/devblocks)+1, nblocks>devblocks ? "s" : ""); for (i=0; i < nblocks; i++) { if (i && (i % devblocks == 0)) { printk("done disk #%d./n", i/devblocks); rotate = 0; invalidate_buffers(device); 使输入盘设备缓冲区无效 if (infile.f_op->release) infile.f_op->release(inode, &infile); printk("Please insert disk #%d and press ENTER/n", i/devblocks+1); wait_for_keypress(); if (blkdev_open(inode, &infile) != 0) { printk("Error opening disk./n"); goto done; } infile.f_pos = 0; printk("Loading disk #%d... ", i/devblocks+1); } infile.f_op->read(&infile, buf, BLOCK_SIZE, &infile.f_pos); outfile.f_op->write(&outfile, buf, BLOCK_SIZE, &outfile.f_pos);#if !defined(CONFIG_ARCH_S390) if (!(i % 16)) { printk("%c/b", rotator[rotate & 0x3]); rotate++; }#endif } printk("done./n"); kfree(buf);successful_load: invalidate_buffers(device); ROOT_DEV = MKDEV(MAJOR_NR, unit); 将根盘设备设置为当前加载的内存盘 if (ROOT_DEVICE_NAME != NULL) strcpy (ROOT_DEVICE_NAME, "rd/0");done: if (infile.f_op->release) infile.f_op->release(inode, &infile); set_fs(fs); return;free_inodes: /* free inodes on error */ iput(out_inode); blkdev_put(inode->i_bdev, BDEV_FILE);free_inode: iput(inode);}int __init identify_ramdisk_image(kdev_t device, struct file *fp, int start_block){ const int size = 512; struct minix_super_block *minixsb; struct ext2_super_block *ext2sb; struct romfs_super_block *romfsb; int nblocks = -1; unsigned char *buf; buf = kmalloc(size, GFP_KERNEL); if (buf == 0) return -1; minixsb = (struct minix_super_block *) buf; ext2sb = (struct ext2_super_block *) buf; romfsb = (struct romfs_super_block *) buf; memset(buf, 0xe5, size); /* * Read block 0 to test for gzipped kernel */ if (fp->f_op->llseek) fp->f_op->llseek(fp, start_block * BLOCK_SIZE, 0); fp->f_pos = start_block * BLOCK_SIZE; fp->f_op->read(fp, buf, size, &fp->f_pos); ; 读取offset开始的512字节 /* * If it matches the gzip magic numbers, return -1 */ if (buf[0] == 037 && ((buf[1] == 0213) || (buf[1] == 0236))) { printk(KERN_NOTICE "RAMDISK: Compressed image found at block %d/n", start_block); nblocks = 0; goto done; } /* romfs is at block zero too */ if (romfsb->word0 == ROMSB_WORD0 && romfsb->word1 == ROMSB_WORD1) { printk(KERN_NOTICE "RAMDISK: romfs filesystem found at block %d/n", start_block); nblocks = (ntohl(romfsb->size)+BLOCK_SIZE-1)>>BLOCK_SIZE_BITS; goto done; } /* * Read block 1 to test for minix and ext2 superblock */ if (fp->f_op->llseek) fp->f_op->llseek(fp, (start_block+1) * BLOCK_SIZE, 0); fp->f_pos = (start_block+1) * BLOCK_SIZE; fp->f_op->read(fp, buf, size, &fp->f_pos); /* Try minix */ if (minixsb->s_magic == MINIX_SUPER_MAGIC || minixsb->s_magic == MINIX_SUPER_MAGIC2) { printk(KERN_NOTICE "RAMDISK: Minix filesystem found at block %d/n", start_block); nblocks = minixsb->s_nzones << minixsb->s_log_zone_size; goto done; } /* Try ext2 */ if (ext2sb->s_magic == cpu_to_le16(EXT2_SUPER_MAGIC)) { printk(KERN_NOTICE "RAMDISK: ext2 filesystem found at block %d/n", start_block); nblocks = le32_to_cpu(ext2sb->s_blocks_count); goto done; } printk(KERN_NOTICE "RAMDISK: Couldn't find valid RAM disk image starting at %d./n", start_block);done: if (fp->f_op->llseek) fp->f_op->llseek(fp, start_block * BLOCK_SIZE, 0); fp->f_pos = start_block * BLOCK_SIZE; kfree(buf); return nblocks;}; fs/super.cvoid __init mount_root(void){ struct file_system_type * fs_type; struct super_block * sb; struct vfsmount *vfsmnt; struct block_device *bdev = NULL; mode_t mode; int retval; void *handle; char path[64]; int path_start = -1;#ifdef CONFIG_BLK_DEV_FD if (MAJOR(ROOT_DEV) == FLOPPY_MAJOR) { 当根盘还是软盘,表示没有加载过内存盘#ifdef CONFIG_BLK_DEV_RAM extern int rd_doload; extern void rd_load_secondary(void);#endif floppy_eject();#ifndef CONFIG_BLK_DEV_RAM printk(KERN_NOTICE "(Warning, this kernel has no ramdisk support)/n");#else /* rd_doload is 2 for a al initrd/ramload setup */ ; 只有当加载了initrd但没有释放到内存盘中(mount_inird=0)才有可能到这一步 if(rd_doload==2) rd_load_secondary(); 加载另一张软盘到1号内存盘作为根盘 else#endif { printk(KERN_NOTICE "VFS: Insert root floppy and press ENTER/n"); wait_for_keypress(); } }#endif devfs_make_root (root_device_name); handle = devfs_find_handle (NULL, ROOT_DEVICE_NAME, MAJOR (ROOT_DEV), MINOR (ROOT_DEV), DEVFS_SPECIAL_BLK, 1); if (handle) /* Sigh: bd*() functions only paper over the cracks */ { unsigned major, minor; devfs_get_maj_min (handle, &major, &minor); ROOT_DEV = MKDEV (major, minor); } /* * Probably pure paranoia, but I'm less than happy about delving into * devfs crap and checking it right now. Later. */ if (!ROOT_DEV) panic("I have no root and I want to scream"); bdev = bdget(kdev_t_to_nr(ROOT_DEV)); if (!bdev) panic(__FUNCTION__ ": unable to allocate root device"); bdev->bd_op = devfs_get_ops (handle); path_start = devfs_generate_path (handle, path + 5, sizeof (path) - 5); mode = FMODE_READ; if (!(root_mountflags & MS_RDONLY)) mode |= FMODE_WRITE; retval = blkdev_get(bdev, mode, 0, BDEV_FS); if (retval == -EROFS) { root_mountflags |= MS_RDONLY; retval = blkdev_get(bdev, FMODE_READ, 0, BDEV_FS); } if (retval) { /* * Allow the user to distinguish between failed open * and bad superblock on root device. */ printk ("VFS: Cannot open root device /"%s/" or %s/n", root_device_name, kdevname (ROOT_DEV)); printk ("Please append a correct /"root=/" boot option/n"); panic("VFS: Unable to mount root fs on %s", kdevname(ROOT_DEV)); } check_disk_change(ROOT_DEV); sb = get_super(ROOT_DEV); 取根盘的超级块 if (sb) { fs_type = sb->s_type; goto mount_it; } read_lock(&file_systems_lock); for (fs_type = file_systems ; fs_type ; fs_type = fs_type->next) { if (!(fs_type->fs_flags & FS_REQUIRES_DEV)) continue; 根文件系统必须依赖于块设备 if (!try_inc_mod_count(fs_type->owner)) continue; 当文件系统模块正在删除过程中 read_unlock(&file_systems_lock); sb = read_super(ROOT_DEV,bdev,fs_type,root_mountflags,NULL,1);建立根盘的超级块结构 if (sb) goto mount_it; read_lock(&file_systems_lock); put_filesystem(fs_type); 释放对文件系统模块的引用 } read_unlock(&file_systems_lock); panic("VFS: Unable to mount root fs on %s", kdevname(ROOT_DEV));mount_it: printk ("VFS: Mounted root (%s filesystem)%s./n", fs_type->name, (sb->s_flags & MS_RDONLY) ? " readonly" : ""); if (path_start >= 0) { devfs_mk_symlink (NULL, "root", DEVFS_FL_DEFAULT, path + 5 + path_start, NULL, NULL); memcpy (path + path_start, "/dev/", 5); vfsmnt = add_vfsmnt(NULL, sb->s_root, path + path_start); } else vfsmnt = add_vfsmnt(NULL, sb->s_root, "/dev/root"); 建立根盘的安装结构 /* FIXME: if something will try to umount us right now... */ if (vfsmnt) { set_fs_root(current->fs, vfsmnt, sb->s_root); 设置当前进程的根盘和根目录 set_fs_pwd(current->fs, vfsmnt, sb->s_root); 设置当前进程的当前盘和当前目录 if (bdev) bdput(bdev); /* sb holds a reference */ return; } panic("VFS: add_vfsmnt failed for root fs");}#ifdef CONFIG_BLK_DEV_INITRDint __init change_root(kdev_t new_root_dev,const char *put_old){ 以new_root_dev作为根盘重新安装根文件系统,原来的根转移到put_old目录下 struct vfsmount *old_rootmnt; struct nameidata devfs_nd, nd; int error = 0; read_lock(¤t->fs->lock); old_rootmnt = mntget(current->fs->rootmnt); 取当前进程的根盘安装结构 read_unlock(¤t->fs->lock); /* First unmount devfs if mounted */ if (path_init("/dev", LOOKUP_FOLLOW|LOOKUP_POSITIVE, &devfs_nd)) error = path_walk("/dev", &devfs_nd); if (!error) { if (devfs_nd.mnt->mnt_sb->s_magic == DEVFS_SUPER_MAGIC && devfs_nd.dentry == devfs_nd.mnt->mnt_root) { dput(devfs_nd.dentry); down(&mount_sem); /* puts devfs_nd.mnt */ do_umount(devfs_nd.mnt, 0, 0); up(&mount_sem); } else path_release(&devfs_nd); } ROOT_DEV = new_root_dev; mount_root(); 改变根盘设备重新安装根文件系统#if 1 shrink_dcache(); 清除目录项缓冲中所有自由的目录项 printk("change_root: old root has d_count=%d/n", atomic_read(&old_rootmnt->mnt_root->d_count));#endif mount_devfs_fs (); /* * Get the new mount directory */ error = 0; if (path_init(put_old, LOOKUP_FOLLOW|LOOKUP_POSITIVE|LOOKUP_DIRECTORY, &nd)) error = path_walk(put_old, &nd); 在新的根盘中寻找put_old目录 if (error) { int blivet; printk(KERN_NOTICE "Trying to unmount old root ... "); blivet = do_umount(old_rootmnt, 1, 0); 卸载原始的根盘 if (!blivet) { printk("okay/n"); return 0; } printk(KERN_ERR "error %d/n", blivet); return error; } /* FIXME: we should hold i_zombie on nd.dentry */ move_vfsmnt(old_rootmnt, nd.dentry, nd.mnt, "/dev/root.old"); mntput(old_rootmnt); path_release(&nd); return 0;}#endifstatic struct vfsmount *add_vfsmnt(struct nameidata *nd, 在虚拟文件系统中的安装点 struct dentry *root, 安装盘的根目录项 const char *dev_name) 安装盘名称{ struct vfsmount *mnt;
————————————————
版权声明:本文为CSDN博主“huanghaibin”的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/huanghaibin/java/article/details/478215
‘陆’ linux 内核编译需要多少空间
配置内核
有了要编译配置的内核,先来介绍怎么样配置内核。具体的步骤分为一下几 步:
1.在开始配置内核之前,首先需要通过下面的命令清除所有的临时文件、中间件和配置文件。对于一个刚从网 上下载的内核来说,它肯定是干净的,这么做只会多此一举。但是这是一个良好习惯,而且不会有坏结果。
#make mrproper
2. 然后 要了解自己系统的硬件配置情况,比如CPU的类型、主办芯片、显卡和声卡的型号等。
3. 配置 内核选项,用到的命令是:
#make
用到的配置工具有:
◆ config 基于交互式的文本配置界面。每个问题以线形格式出现,并被一个一个地回答,而且一旦作出了回答就不能再修改 了。
◆ oldconfig 同config相似,但是使用原有的配置文件, 而且只会提问有关新内核特性的问题,对于内核升级很方便。
◆ menuconfig 一个文本模式、选单驱动的配置界面。
◆ xconfig 基于Tcl/Tk的X图形配置界面。
现在开始配置内核,使用的工具为menuconfig。在命令行模式下执行下面的命 令:
#make menuconfig
在闪过几行字之后就出现内核配置界面。
使用方向键在各选项间移动;使用“Enter”键进入下一层选单;每个选项上的 高亮字母是键盘快捷方式,使用它可以快速地到达想要设置的选单项。在括号中按“y”将这个项目编译进内核中,按“m”编译为模块,按“n”为不选择(按空格键也可在编译进 内核、编译为模块和不编译三者间进行切换),按“h”将显示这个选项的帮助信息,按“Esc”键将返回到上层选单。
注 意,如果“make menuconfig”命令失败,很可能是ncurses库没有安装。
‘柒’ linux编译内核时,到安装内核模块:#make moles_install 时,过程中提示设备上没有空间
建议裁剪内核,内核中很多驱动模块,子系统等一般用户都用不上,我在我自己的电脑上裁剪后编译的内核源码树大小只有700多M~
‘捌’ 关于ubuntu内核编译的问题
解决办法 修改 menu.lst 将 root=/UUIDxxxxxxx 这个改为 root=/dev/sdax
另外 从Filesystem type is ntfs.partition type 0x07 这一行我大概可看出,你是wubi安装的, 这种情况 我建议你重新编译内核并生成initrd, 因为内核不支持uuid的,initrd才支持,如果把filesystem编译进内核了,启动不用initrd.img的话,就只能用root=/dev/sdax的参数作为内核引导参数…
所以关键在于 一定要打开initrd支持并生成initrd
至于具体在那里,我这边环境所限无法告知, 麻烦你自己在make menuconfig里面仔细看看或者google一下
/dev/sdxx 是你的硬盘的/的设备名称 可以用正常启动的内核引导后 输入sudo df -h或者 sudo fdisk -l
目前的机器来讲 编译20分钟很正常, 我的内核优化的很小 大概十分钟左右就编译完了 .
另外 内核源码解开后会占用接近200M的空间, 而gcc编译内核和大型软件时候产生的临时文件占用好几百M乃至上G是很常见的的, 可以进入源代码文件夹运行 make clean && make mrproper 来清理一下
‘玖’ 在LINUX中可否把应用程序都编译到内核中,让系统启动后完全在内存中运行不读硬盘!
不行,
内核是内核,只提供最基本的服务。很多服务可以编译成模块装入内核,但是模块也不是无限多的。你编译过内核吗?内核文件不大,解压出来有200多M吧,如果全部功能编译的话,一般电脑没有几天可能下不来。
把程序编译到内核,不是不行,不过你的程序要修改。如果你能为linux内核提供代码的水平,估计离你说的就不远了。
你的想法有点...... 在你硬盘上读点东西就那么吝啬吗?
我Linux4G多的文件,分了6G数据空间,还有2G的交换文件,我都没心疼。