1. Canny边缘检测算法的步骤和理解
姓名:高强 学号:17011210057
【嵌牛导读】:本文主要介绍Canny图像边缘检测算法的步骤和对各个步骤的理解
【嵌牛鼻子】:边缘检测,Canny,步骤
【嵌牛提问】:canny边缘检测算法的步骤是怎样?
【嵌牛正文】:
1. Canny边缘检测算法的提出和指标
Canny算法是John Canny在1986年提出的,那年John Canny 28岁,该文章发表在PAMI顶级期刊上(1986.IEEE Transactions on Pattern Analysis and Machine Intelligence,vol. 8, 1986 , pp 679-698 )。
Canny算子与Marr(LoG)边缘检测方法类似(Marr大爷号称计算机视觉之父),也属于是先平滑后求导数的方法。John Canny研究了最优边缘检测方法所需的特性,给出了评价边缘检测性能优劣的三个指标:
(1)好的信噪比 ,即将非边缘点判定为边缘点的概率要低,将边缘点判为非边缘点的概率要低;
(2)高的定位性能 ,即检测出的边缘点要尽可能在实际尘友边缘的中心;
(3)对单一边缘仅有唯一响应 ,即单个边缘产生多个响应的概率要低,并且虚假响应边缘应该得到最大抑制。
用一句话说,就是希望在提高对景物边缘的敏感性的同时,可以抑制噪声的方法才是好的边缘提取方法。
2. Canny边缘检测算法的步骤 :
(1)图像高斯滤波进行降噪处理。
(2)用一阶偏导的有限差分计算梯度告森的幅值和方向。
(3)对梯度幅值进行非极大值抑制。
(4)用双阈值算法检测和连接边缘。
3. Canny边缘检测算法的通俗理解
Canny算法的目的就是边缘检测,何为边缘?图象局部区域亮度变化显着的部分,对于灰度图像来说,也就是灰度值有一个明显变化,既从一个灰度值在很小的缓冲区域内急剧变化到另一个灰度相差较大的灰度值。那么袜兄亩怎么表征这种灰度值的变化呢?这里想到的就是导数微分,导数就是表征变化率的,但是数字图像都是离散的,也就是导数肯定会用差分来代替。也就是具体算法中的步骤2,用相邻像素的差分来计算梯度的大小和方向。但是在真实的图像中,一般会有噪声,噪声会影响梯度的计算,所以步骤1要先滤波。理论上将图像梯度幅值的元素值越大,说明图像中该点的梯度值越大,但这不能说明该点就是边缘。在Canny算法中,步骤3的非极大值抑制是进行边缘检测的重要步骤,通俗意义上是指寻找像素点的局部最大值,沿着梯度方向,比较它前面和后面的梯度值,若梯度值局部最大则有可能为边缘像素,进行保留,否则就进行抑制。步骤4是一个典型算法,有时候我们并不能一刀切,也就是超过阈值的都是边缘点,而是设两个阈值,希望在高阈值和低阈值之间的点也可能是边缘点,而且这些点最好在高阈值的附近,也就是说这些中间阈值的点是高阈值边缘点的一种延伸。所以步骤4用了双阈值来进行检测和连接边缘。双阈值有时也叫做滞后阈值。
2. 图片处理-opencv-10.图像锐化与边缘检测
Roberts算子又称为交叉微分算法,它是基于交叉差分的梯度算法,通过局部差分计算检测边缘线条。常用来处理具有陡峭的低噪声图像,当图像边缘接近于正45度或负45度时,该算法处理效果更理想。其缺点是对边缘的定位不太准确,提取的边缘线条较粗。
Prewitt是一种图像边缘检测的微分算子,其原理是利用特定区域内像素灰度值产生的差分实现边缘检测。由于Prewitt算子采用3 3模板对区域内的像素值进行计算,而Robert算子的模板为2 2,故Prewitt算子的边缘检测结果在水平方向和垂直方向均比Robert算子更加明显。Prewitt算子适合用来识别噪声较多、灰度渐变的图像。
dst = filter2D(src, ddepth, kernel[, dst[, anchor[, delta[, borderType]]]])
RSobel算子是一种用于边缘检测的离散微分算子,它结合了高斯平滑和微分求导。该算子用于计算图像明暗程度近似值,根据图像边缘旁边明暗程度把该区域内超过某个数的特定点记为边缘。Sobel算子在Prewitt算子的基础上增加了权重的概念,认为相邻点的距离远近对当前像素点的影响是不同的,距离越近的像素点对应当前像素的影响越大,从而实现图像锐化并突出边缘轮廓。Sobel算子的边缘定位更准确,常用于噪声较多、灰度渐变的图像。
Sobel算子根据像素点上下、左右邻点灰度加权差,在边缘处达到极值这一现象检测边缘。对噪声具有平滑作用,提供较为精确的边缘方向信息。因为Sobel算子结合了高斯平滑和微分求导(分化),因此结果会具有更多的抗噪性,当对精度要求不是很高时,Sobel算子是一种较为常用的边缘检测方法。
dst = Sobel(src, ddepth, dx, dy[, dst[, ksize[, scale[, delta[, borderType]]]]])
在进行Sobel算子处理之后,还需要调用convertScaleAbs()函数计算绝对值,并将图像转换为8位图进行显示
dst = convertScaleAbs(src[, dst[, alpha[, beta]]])
拉普拉斯(Laplacian)算子是n维欧几里德空间中的一个二阶微分算子,常用于图像增强领域和边缘提取。它通过灰度差分计算邻域内的像素,基本流程是:判断图像中心像素灰度值与它周围其他像素的灰度值,如果中心像素的灰度更高,则提升中心像素的灰度;反之降低中心像素的灰度,从而实现图像锐化操作。在算法实现过程中,Laplacian算子通过对邻域中心像素的四方向或八方向求梯度,再将梯度相加起来判断中心像素灰度与邻域内其他像素灰度的关系,最后通过梯度运算的结果对像素灰度进行调整。
Laplacian算子分为四邻域和八邻域,四邻域是对邻域中心像素的四方向求梯度,八邻域是对八方向求梯度。当邻域内像素灰度相同时,模板的卷积运算结果为0;当中心像素灰度高于邻域内其他像素的平均灰度时,模板的卷积运算结果为正数;当中心像素的灰度低于邻域内其他像素的平均灰度时,模板的卷积为负数。对卷积运算的结果用适当的衰弱因子处理并加在原中心像素上,就可以实现图像的锐化处理。
dst = Laplacian(src, ddepth[, dst[, ksize[, scale[, delta[, borderType]]]]])
由于Sobel算子在计算相对较小的核的时候,其近似计算导数的精度比较低,比如一个33的Sobel算子,当梯度角度接近水平或垂直方向时,其不精确性就越发明显。Scharr算子同Sobel算子的速度一样快,但是准确率更高,尤其是计算较小核的情景,所以利用3*3滤波器实现图像边缘提取更推荐使用Scharr算子
Scharr算子又称为Scharr滤波器,也是计算x或y方向上的图像差分,在OpenCV中主要是配合Sobel算子的运算而存在的。Scharr算子的函数原型如下所示,和Sobel算子几乎一致,只是没有ksize参数.
dst = Scharr(src, ddepth, dx, dy[, dst[, scale[, delta[, borderType]]]]])
Canny边缘检测算子(多级边缘检测算法)是一种被广泛应用于边缘检测的标准算法,其目标是找到一个最优的边缘检测解或找寻一幅图像中灰度强度变化最强的位置。最优边缘检测主要通过低错误率、高定位性和最小响应三个标准进行评价。
Canny算子的实现步骤如下:
edges = Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient]]])
LOG(Laplacian of Gaussian)边缘检测算子也称为Marr&Hildreth算子,它根据图像的信噪比来求检测边缘的最优滤波器。该算法首先对图像做高斯滤波,然后再求其拉普拉斯(Laplacian)二阶导数,根据二阶导数的过零点来检测图像的边界,即通过检测滤波结果的零交叉(Zero crossings)来获得图像或物体的边缘。
LOG算子该综合考虑了对噪声的抑制和对边缘的检测两个方面,并且把Gauss平滑滤波器和Laplacian锐化滤波器结合了起来,先平滑掉噪声,再进行边缘检测,所以效果会更好。 该算子与视觉生理中的数学模型相似,因此在图像处理领域中得到了广泛的应用。它具有抗干扰能力强,边界定位精度高,边缘连续性好,能有效提取对比度弱的边界等特点。
3. sobel边缘检测优缺点与canny算子的优缺点
一、sobel边缘检测:
1、sobel边缘检测优点:输出图像(数组)的元素通常具有更大的绝对数值。
2、sobel边缘检测缺点:由于边缘是位置的标志,对灰度的变化不敏感。
二、canny算子:
1、canny算子优点:法能够尽可能多地标识出图像中的实际边缘;标识出的边缘要与实际图像中的实际边缘尽可能接近。
2、canny算子缺点:图像中的边缘只能标识一次,并且可能存在的图像噪声不应标识为边缘。
(3)边界识别算法扩展阅读:
Sobel边缘检测的核心在于像素矩阵的卷积,卷积对于数字图像处理非常重要,很多图像处理算法都是做卷积来实现的。
卷积运算的本质就是对制定的图像区域的像素值进行加权求和的过程,其计算过程为图像区域中的每个像素值分别与卷积模板的每个元素对应相乘,将卷积的结果作求和运算,运算到的和就是卷积运算的结果。
4. 如何利用opencv实现彩色图像边缘检测算法
在opencv中显示边缘检测很简单,只需调用一个cvCanny函数,其使用的是Canny算法来实现对图像的边缘检测.
函数原型为:
void cvCanny( const CvArr* image,CvArr* edges,double threshold1,double threshold2, int aperture_size=3 );
第一个参数为待检测的图像,注意一点,其必须是灰度图.
第二个参数为输出的边缘图,其也是一个灰度图.
后三个参数与Canny算法直接相关,threshold1和threshold2 当中的小阈值用来控制边缘连接,大的阈值用来控制强边缘的初始分割,aperture_size算子内核大小,可以去看看Canny算法.
从彩色图到灰度图需要使用到cvCvtColor函数,其接受三个参数,第一为输入,第二为输出,第三个为转换的标识,我们这边是RGB到GRAY,使用的是CV_RGB2GRAY.
参考demo代码如下:
#include <iostream>
#include <string>
#include <sstream>
#include <opencv/cv.h>
#include <opencv/highgui.h>
using namespace std;
int String2int(const string& str_)
{
int _nre = 0;
stringstream _ss;
_ss << str_;
_ss >> _nre;
return _nre;
}
void DoCanny(const string& strFileName_)
{
//原彩色图片
IplImage* _pIplImageIn = cvLoadImage(strFileName_.data());
if (_pIplImageIn == NULL)
{
return;
}
//彩色图片转换成灰度图放置的图片
IplImage* _pIplImageCanny = cvCreateImage(cvGetSize(_pIplImageIn), _pIplImageIn->depth, 1);
cvCvtColor(_pIplImageIn, _pIplImageCanny, CV_RGB2GRAY);//CV_RGB2GRAY将rgb图转成灰度图
//只有边缘路径的图片
IplImage* _pIplImageOut = cvCreateImage(cvGetSize(_pIplImageIn), IPL_DEPTH_8U, 1);
//边缘检测只能作用于灰度图
if (_pIplImageCanny->nChannels != 1)
{
return;
}
//边缘检测操作
cvCanny(_pIplImageCanny, _pIplImageOut, 1, 110, 3);
cvNamedWindow("Src");
cvShowImage("Src", _pIplImageIn);
cvNamedWindow("Canny");
cvShowImage("Canny", _pIplImageOut);
cvWaitKey(0);
cvReleaseImage(&_pIplImageIn);
cvReleaseImage(&_pIplImageCanny);
cvReleaseImage(&_pIplImageOut);
cvDestroyWindow("Src");
cvDestroyWindow("Canny");
}
int main(int argc, char* argv[])
{
if (argc < 2)
{
cout << "You should give the filename of picture!" << endl;
return -1;
}
DoCanny(argv[1]);
return 0;
}
5. 怎样理解微分算子可以检测图像的边界
常见的边缘检测算子有Roberts算子、Prewitt算子、Sobel算子、Marr-Hidreth边缘检测以及canny算子等。
一、利用梯度进行哪汪早边缘检测
1、Roberts算子采用对角线方向相邻两像素之差近似的梯度幅值来检测边缘。该算子定位较准确,但对噪声比较敏感,检测水平和竖直边缘效果好于斜向李雀边缘。
2、Sobel算子根据图陵孝像的像素点上下、左右邻点灰度加权差在边缘处达到极值这一特点来检测边缘。该算子对噪声有较好的平滑作用,能提供建准确的边缘方向信息,但是边缘定位精度不高。
3、Prewitt算子边缘检测的思路与Sobel算子类似,也是在一个掩模中定义微分运算。算子对噪声具有平滑作用,同样定位精度不够高。
二、更为先进的边缘检测技术
1、Marr-Hildreth算法(拉普拉斯算子)
(1)采用高斯低通滤波器对图像进行滤波;
(2)采用拉普拉斯模板对进行卷积;
(3)找到步骤(2)所得图像的零交叉。
该算子是二阶微分算子,利用边缘点处二阶导函数出现零交叉原理来检测图像的边缘。对灰度突变及噪声较敏感,不具有方向性,不能获得图像边缘的方向信息。
2、Canny算子
Canny边缘检测算法步骤:
(1)用一个高斯滤波器平滑输入图像
(2)计算梯度幅值图像和角度图像
(3)对梯度幅值图像进行非最大抑制
(4)用双阈值处理和连接分析来检测并连接边缘
Canny算子是上述中效果最好的算子,该算子去噪能力强,在连续性、细度和笔直度等线的质量方面也很出众。但是Canny算子的性能带来的问题是:连接起来更复杂、执行时间较长。
综上所述,在实际工业生产中,要求实时性较高的情况下,通常采用阈值梯度的方法;当对质量要求较高时,可选择更为先进的方法,尤其是Canny算子。