导航:首页 > 源码编译 > 什么叫算法分析的目标

什么叫算法分析的目标

发布时间:2023-08-15 19:56:07

① 数据结构与算法分析

本文出自:

www点54manong点com

请尊重原创,转载请注明出处,谢谢!

什么是数据结构,为什么要学习数据结构?数据结构是否是一门纯数学课程?它在专业课程体系中起什么样的作用?我们要怎么才能学好数据结构?… 相信同学们在刚开始《数据结构》这门课的学习时,心里有着类似前面几个问题的这样那样的疑问。希望下面的内容能帮助大家消除疑惑,下定决心坚持学好这门课:

1 学习数据数据结构的意义

数据结构是计算机科学与技术专业、计算机信息管理与应用专业,电子商务等专业的基础课,是十分重要的核心课程。所有的计算机系统软件和应用软件都要用到各种类型的数据结构。因此,要想更好地运用计算机来解决实际问题,仅掌握几种计算机程序设计语言是难以应付当前众多复杂的课题。要想有效地使用计算机、充分发挥计算机的性能,还必须学习和掌握好数据结构的有关知识。打好“数据结构”这门课程的扎实基础,对于学习计算机专业的其他课程,如操作系统、数据库管理系统、软件工程、编译原理、人工智能、图视学等都是十分有益的。

2 为什么要学习数据结构

在计算机发展的初期,人们使用计算机的目的主要是处理数值计算问题。当我们使用计算机来解决一个具体问题时,一般需要经过下列几个步骤:首先要从该具体问题抽象出一个适当的数学模型,然后设计或选择一个解此数学模型的算法,最后编出程序进行调试、测试,直至得到最终的解答。例如,求解梁架结构中应力的数学模型的线性方程组,可以使用迭代算法来求解。

由于当时所涉及的运算对象是简单的整型、实型或布尔类型数据,所以程序设计者的主要精力是集中于程序设计的技巧上,而无须重视数据结构。随着计算机应用领域的扩大和软、硬件的发展,非数值计算问题越来越显得重要。据统计,当今处理非数值计算性问题占用了85%以上的机器时间。这类问题涉及到的数据结构更为复杂,数据元素之间的相互关系一般无法用数学方程式加以描述。因此,解决这类问题的关键不再是数学分析和计算方法,而是要设计出合适的数据结构,才能有效地解决问题。下面所列举的就是属于这一类的具体问题。

例1:图书馆信息检索系统。当我们根据书名查找某本书有关情况的时候;或者根据作者或某个出版社查找有关书籍的时候,或根据书刊号查找作者和出版社等有关情况的时候,只要我们建立了相关的数据结构,按照某种算法编写了相关程序,就可以实现计算机自动检索。由此,可以在图书馆信息检索系统中建立一张按书刊号顺序排列的图书信息表和分别按作者、书名、出版社顺序排列的索引表,如图1.1所示。由这四张表构成的文件便是图书信息检索的数学模型,计算机的主要操作便是按照某个特定要求(如给定书名)对图书馆藏书信息文件进行查询。

诸如此类的还有学生信息查询系统、商场商品管理系统、仓库物资管理系统等。在这类文档管理的数学模型中,计算机处理的对象之间通常存在着的是一种简单的线性关系,这类数学模型可称为线性的数据结构。

例2:八皇后问题。在八皇后问题中,处理过程不是根据某种确定的计算法则,而是利用试探和回溯的探索技术求解。为了求得合理布局,在计算机中要存储布局的当前状态。从最初的布局状态开始,一步步地进行试探,每试探一步形成一个新的状态,整个试探过程形成了一棵隐含的状态树。如图1.2所示(为了描述方便,将八皇后问题简化为四皇后问题)。回溯法求解过程实质上就是一个遍历状态树的过程。在这个问题中所出现的树也是一种数据结构,它可以应用在许多非数值计算的问题中。

例3:教学计划编排问题。一个教学计划包含许多课程,在教学计划包含的许多课程之间,有些必须按规定的先后次序进行,有些则没有次序要求。即有些课程之间有先修和后续的关系,有些课程可以任意安排次序。这种各个课程之间的次序关系可用一个称作图的数据结构来表示,如图1.3所示。有向图中的每个顶点表示一门课程,如果从顶点vi到vj之间存在有向边<vi,vj>,则表示课程i必须先于课程j进行。由以上三个例子可见,描述这类非数值计算问题的数学模型不再是数学方程,而是诸如线性表、树、图之类的数据结构。因此,可以说数据结构课程主要是研究非数值计算的程序设计问题中所出现的计算机操作对象以及它们之间的关系和操作的学科。

学习数据结构的目的是为了了解计算机处理对象的特性,将实际问题中所涉及的处理对象在计算机中表示出来并对它们进行处理。与此同时,通过算法训练来提高学生的思维能力,通过程序设计的技能训练来促进学生的综合应用能力和专业素质的提高。

3数据结构课程的内容

数据结构与数学、计算机硬件和软件有十分密切的关系,它是介于数学、计算机硬件和计算机软件之间的一门计算机专业的核心课程,是高级程序设计语言、操作系统、编译原理、数据库、人工智能、图视学等课程的基础。同时,数据结构技术也广泛应用于信息科学、系统工程、应用数学以及各种工程技术领域。

数据结构课程重在讨论软件开发过程中的方案设计阶段、同时设计编码和分析阶段的若干基本问题。此外,为了构造出好的数据结构及其实现,还需考虑数据结构及其实现的评价与选择。因此,数据结构的内容包括三个层次的五个“要素”,如图1.3所示。

数据结构的核心技术是分解与抽象。通过分解可以划分出数据的三个层次;再通过抽象,舍弃数据元素的具体内容,就得到逻辑结构。类似地,通过分解将处理要求划分成各种功能,再通过抽象舍弃实现细节,就得到运算的定义。上述两个方面的结合使我们将问题变换为数据结构。这是一个从具体(即具体问题)到抽象(即数据结构)的过程。然后,通过增加对实现细节的考虑进一步得到存储结构和实现运算,从而完成设计任务。这是一个从抽象(即数据结构)到具体(即具体实现)的过程。熟练地掌握这两个过程是数据结构课程在专业技能培养方面的基本目标。

结束语:数据结构作为一门独立的课程在国外是从1968年才开始的,但在此之前其有关内容已散见于编译原理及操作系统之中。20世纪60年代中期,美国的一些大学开始设立有关课程,但当时的课程名称并不叫数据结构。1968年美国唐.欧.克努特教授开创了数据结构的最初体系,他所着的《计算机程序设计技巧》第一卷《基本算法》是第一本较系统地阐述数据的逻辑结构和存储结构及其操作的着作。从20世纪60年代末到70年代初,出现了大型程序,软件也相对独立,结构程序设计成为程序设计方法学的主要内容,人们越来越重视数据结构。从70年代中期到80年代,各种版本的数据结构着作相继出现。目前,数据结构的发展并未终结,一方面,面向各专门领域中特殊问题的数据结构得到研究和发展,如多维图形数据结构等;另一方面,从抽象数据类型和面向对象的观点来讨论数据结构已成为一种新的趋势,越来越被人们所重视。

② 什么是数据结构和算法分析在编程里起到什么作用

编程是为了解决问题,这些问题并表都是数值计算,其所处理的数据并不都是数值,但计算机所能处理的最终是0和1的二进制串,所以需要把问题中的数据用计算机能处理的方式来表示,这就需要数据结构。

简单的说,数据结构是数据在计算机中的表示方式,有逻辑结构和物理结构之分,如逻辑上同样的队列,物理上可以是顺序存储,也可以是链式存储。

通俗的讲,算法就是解决问题的方法,比如同样的排序,可以用冒泡排序、插入排序等,不同的算法可以达到相同的目标,但是效率可能有所不同。

③ 算法分析的两个主要方面是什么

算法分析的主要方面是空间复杂性和时间复杂性。

在计算机科学中,算法分析是分析执行一个给定算法需要消耗的计算资源数量的过程。算法的效率或复杂度在理论上表示为一个函数。其定义域是输入数据的长度,值域通常是执行步骤数量或者存储器位置数量。算法分析是计算复杂度理论的重要组成部分。

算法的特性

(1)确定性。组成算法的每条指令是清晰的、无歧义的,对特定的输入有特定的输出。

(2)有穷性。算法中的每条指令的执行次数有限,执行每条指令的时间也有限。程序只表现成一段实现算法的代码。

(3)可行性。算法需要考虑程序编程的可能性。

(4)输入。有零或多个外部量作为算法的输入,并且依靠程序的平台来提供。

(5)输出。算法会产生至少一个量作为输出,所输出的内容也需依靠代码来获得支持。

④ 算法的概念是什么

算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说能够对一定规范的输入,在有限时间内获得所要求的输出。

算法中的指令描述的是一个计算,当其运行时能从一个初始状态和(可能为空的)初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态。一个状态到另一个状态的转移不一定是确定的。随机化算法在内的一些算法,包含了一些随机输入。

(4)什么叫算法分析的目标扩展阅读

算法优势介绍

提升学习能力,以“阿尔法狗”为代表的自主学习技术,已在某些领域展现超出人类的学习能力,而其根本技术就来源于深度学习算法领域上的飞跃式突破。要进一步实现战场上的人工智能脑力,必然要发展更接近于人脑的自主学习算法模型和以此为基础的军事应用。

实现智能决策,战场博弈的制胜关键之一,就在于全面掌握并应对各种可能性。在智能化作战多域一体的战场空间内,利用算法模型全方位分析态势,进而辅助人脑决策,必然会在战场上展示出强大的“智力集中”优势。

在模式识别和分析方面,可利用机器学习算法模型,提供敌方目标自动化识别方案,集成战场态势信息数据,在己方火控、防空系统部署前,对敌方行动进行充分预测。

⑤ 数据结构中评价算法的两个重要指标是什么

数据结构中评价算法的两个重要指标是时间复杂度和空间复杂度。

同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。一个算法的评价主要从时间复杂度和空间复杂度来考虑。

1、时间复杂度:

算法的时间复杂度是指执行算法所需要的计算工作量。一般来说,计算机算法是问题规模n 的函数f(n),算法的时间复杂度也因此记做。

2、空间复杂度:

算法的空间复杂度是指算法需要消耗的内存空间。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。

(5)什么叫算法分析的目标扩展阅读:

评估算法效率的方法:

1、事后统计方法

这种方法主要是通过设计好的测试程序和数据,利用计算机计时器对不同算法编制的程序的运行时间进行比较,从而确定算法效率的高低。

2、事前分析估算方法

在计算机程序编写前,依据统计方法对算法进行估算。经过总结,可以发现一个高级语言编写的程序在计算机上运行时所消耗的时间取决于下列因素:算法采用的策略、编译产生的代码质量、问题的输入规模、机器执行指令的速度。

参考资料来源:网络-算法

阅读全文

与什么叫算法分析的目标相关的资料

热点内容
voc文件夹 浏览:862
租广东联通服务器注意什么云空间 浏览:932
javascript高级程序设计pdf 浏览:289
pwm单片机原理 浏览:346
ai算法在线修复图片 浏览:979
scratch编程中如何做射击游戏 浏览:476
at89c51编程器 浏览:341
项目经理叫醒程序员 浏览:342
autocad旋转命令 浏览:660
手机版wpsoffice怎么打包文件夹 浏览:579
在成都学车用什么app 浏览:818
grep命令管道 浏览:426
java修改重启 浏览:567
单片机供电方案 浏览:770
airpodspro一代怎么连接安卓 浏览:218
豌豆荚app上有什么游戏 浏览:285
公路商店app标签选什么 浏览:339
linuxoracle命令行登录 浏览:227
android深度休眠 浏览:173
php微信开发例子 浏览:846