导航:首页 > 源码编译 > 博士妈妈速算法

博士妈妈速算法

发布时间:2023-08-16 19:12:53

① 求速算技巧

速算技巧:列式,当数据较大时,运算难度大,把a、b都看成两位数,进行两位数乘法,在选项一定的情况下,可以保证精度。两位数乘速算时,遵循口算速算法则,可以很快得答案。

1、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;

2、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案。

3、某些比较复杂的分数,需要计算分数的“倒数”的首位来判定答案。

4、在乘法或者除法中使用”截位法“时,若答案需要有N位精度,则计算过程的数据需要有N+1位的精度,但具体情况还得由截位时误差的大小以及误差的抵消情况来决定。

(1)博士妈妈速算法扩展阅读:

注意事项

1、两个分数作比较时,若其中一个分数的分子与分母都比另外一个分数的分子与分母分别仅仅大一点,这时候使用“直除法”、“化同法”经常很难比较出大小关系,而使用“差分法”却可以很好地解决这样的问题。

2、在满足“适用形式”的两个分数中,我们定义分子与分母都比较大的分数叫“大分数”,分子与分母都比较小的分数叫“小分数”,而这两个分数的分子、分母分别做差得到的新的分数我们定义为“差分数”。

② 幼儿园手脑速算口诀是什么

准备:家长在带读以下口决并做相关手指游戏前,需发出口令“清零”,幼儿马上双手击掌,然反紧握双拳在胸前,聚精会神做好准备。(注意:手心朝里,两拳间隔以方便双手出指为准,既不要太近也不要太远。) 一、手指定位口决 我有一双手,代表九十九,左手定十位,九十我会数,右手定个位,从一数到九:加减很方便,计算不...用愁。 二、手指定数口决 食指伸开“1”中指伸开“2”无名指伸开为“3”小指伸开“4” 四指一握伸拇指,拇指是“5”要记住,再伸食指到小指,6、7、8 、9排成数。 三、右手出指练习口决 一马当先,二虎相争,三言两语,四海为家,五谷丰登,六畜兴旺,七上八下,八仙过海,九牛一毛,十万为急。一言九鼎,二龙戏珠,三足鼎立,四面楚歌,五谷丰登,六神无主,七上八下,八面玲珑,九牛一毛,十全十美。(注:念到“十万火急”或“十全十美”时,右手握拳,左手出“1”,代表进位。 四、左手出指练习口决一十,二十,三十,四十,五十,六十,七十,八十,九十,一百。(注:念到”一百“时,双手击掌,然后紧握双拳在胸前。) 不知道符合吗?

③ 手脑速算口诀

手脑速算口诀如下:

一、不进位的加法

1、1加4,5博士。(1+4=5 4+1=5)

2、2加3,5指山。(2+3=5 3+2=5)

3、2加4,6猴子。(2+4=6 4+2=6)

4、3加3,6神仙。(3+3=6)

5、3加4, 7桃子。(3+4=7 4+3=7)

6、4加4,8兄弟。(4+4=8)

7、5加5,大老虎。(5+5=10)

三、退位减法(左加右退,右手加几,左手记得要退位1。)

1、1和9,手拉手。9有困难去找1。(加1退1)1有困难去找9。(加9退1)

2、2和8,是一家。8有困难去找2。(加2退1)2有困难去找8。(加8退1)

3、3和7,亲兄弟。7有困难去找了。(加3退1)3有困难去找7。(加7退1)

4、4和6,好朋友。6有困难去找4。(加4退1)4有困难去找6。(加6退1)

5、5和5,大老虎。5有困难去找5。(加5退1)

④ 快速口算的方法是什么

一、一种做多位乘法不用竖式的方法。我们都可以口算1X1 10X1,但是,11X12 12X13 12X14呢?这时候,大家一般都会用竖式,通过竖式计算,得数是132、156、168。其中有趣的规律:即个位上的数字正好是两个因数个位数字的积。十位上的数字是两个数字个位上的和。百位上的数字是两个因数十位数字的积。例如:
12X14=168 1=1X1 6=2+4 8=2X4如果有进位怎么办呢?这个定律对有进位的情况同样适用,在竖式时只要~满几时,就向下一位进几。~例如:
14X16=224 4=4X6的个位 2=2+4+6 2=1+1X1 试着做做看下面的题:
12X15= 11X13= 15X18= 17X19=二、几十一乘以几十一的速算方法 例如: 21×61= 41×91= 41×91= 51×61= 81×91= 41×51= 41×81= 71×81= 这些算式有什么特点呢?是“几十一乘以几十一”的乘法算式,我们可以用:先写十位积,再写十位和(和满10 进1),后写个位积。“先写十位积,再写十位和(和满10 进1),后写个位积”就是一见到几十一乘以几十一的乘法算式,如果十位数的和是一位数,我们先直接写十位数的积,再接着写十位数的和,最后写上1 就一定正确;如果十位数的和是两位数,我们先直接写十位数的积加1 的和,再接着写十位数的和的个位数,最后写一个1 就一定正确。我们来看两个算式:21×61=41×91= 用“先写十位积,再写十位和(和满10 进1),后写个位积”这种速算方法直接写得数时的思维过程。第一个算式,21×61=?思维过程是:2×6=12,2+6=8, 21×61 就等于1281。第二个算式,41×91=?思维过程是:4×9=36,4+9=13,36+1=37, 41×91 就等于3731。 试试上面题目吧!然后再看看下面几题 61×91= 81×81= 31×71= 51×41=一、10-20的两位数乘法及乘方速算方法:尾数相乘,被乘数加上乘数的尾数(满十进位)【例1】 1 2 X 1 3 ----------1 5 6 (1)尾数相乘2X3=6 (2)被乘数加上乘数的尾数12+3=15 (3)把两计算结果相连即为所求结果【例2】 1 5X 1 5------------2 2 5(1)尾数相乘5X5=25(满十进位)(2)被乘数加上乘数的尾数15+5=20,再加上个位进上的2即20+2=22(3)把两计算结果相连即为所求结果二、两位数、三位数乘法及乘方速算a.首数相同,尾数相加和是十的两位数乘法 方法:尾数相乘,首数加一再相乘 【例1】 5 4X 5 6---------3 0 2 4(1)尾数相乘4X6=24直接写在十位和个位上(2)首数5加上1为6,两首数相乘6X5=30(3)把两结果相连即为所求结果【例2】 7 5X 7 5----------5 6 2 5(1)尾数相乘5X5=25直接写在十位和个位上(2)首数7加上1为8,两首数相乘8X7=56(3)把两计算结果相连即可b.尾数是5的三位数乘方速算方法:尾数相乘,十位数加一,再将两首数相乘【例】 1 2 5X 1 2 5------------1 5 6 2 5(1)尾数相乘5X5=25直接写在十位和个位上(2)首数12加上1为13,再两数相乘13X12=156(3)两计算结果相连c.任意两位数乘法方法:尾数相乘,对角相乘再相加,首数相乘 【例】 3 7X X 6 2---------2 2 9 4(1)尾数相乘7X2=14(满十进位)(2)对角相乘3X2=6;7X6=42,两积相加6+42=48(满十进位)(3)首数相乘3X6=18加上十位进上的4为18+4=22(4)把计算结果相连即为所求结果b.任意两位数及三位平方速算方法:尾数的平方,首数乘尾数扩大2倍,首数的平方[例] 2 3X 2 3---------5 2 9 (1)尾数的平方3X3=9(满十进位)(2)首尾数相乘2X3=6扩大两倍为12写在十位上(满十进位)(3)首数的平方2X2=4加上十位进上的1为5(4)把计算结果相连即为所求结果c.三位数的平方与两位数的平方速算方法相同[例] 1 3 2 X 1 3 2------------1 7 4 2 4(1)尾数的平方2X2=4写在个位(2)首尾数相乘13X2=26扩大2倍为52写在个位上(满十进位)(3)首数的平方13X13=169加上十位进上的5为174(4)把计算结果相连即为所求结果〖注意:三位数的首数指前两位数字!〗三、大数的平方速算方法:把题目与100相差,相差数称之为差数;先算差数的平方写在个位和十位上(缺位补零),再用题目减去差数得一结果;最后把两结果相连即为所求结果【例】 9 4X 9 4-----------8 8 3 6(1)94与100相差为6(2)差数6的平方36写在个位和十位上(3)用94减去差数6为88写在百位和千位上(4)把计算结果相连即为所求结果 B55 × 55 = ? 27 × 23 = ? 91 × 99 = ? 43 × 47 = ? 88 × 82 = ? 74 × 76 = ?大家能够很快算出这些算式的正确答案吗?注意,是很快哦!你能吗?我能--3025 ; 621 ; 9009 ;2021 ; 7216 ; 5624 ;很神气吧!速算秘诀:(就以第一题为例好啦)(1)分别取两个数的第一位,而后一个的要加上一以后,相乘。[5×(5+1)]=30;(2)再将末尾数相乘的得数写在后面就可以得出正确的答案了。5×5=25;(3)3025!Bingo!其它依次类推就行了。仔细看每一个式子里的两位数的十位是相同的,而个位的两数则是相补的。这样的速算秘诀只能够适用于这种情况的算式。所以说大家千万不要把巧算和真正的速算混淆在一起,真正的速算是任何数都能算的。一、关于9的数学速算技巧(两位数乘法)
关于9的口诀:
1 × 9 = 9 2 × 9 = 18 3 × 9 = 27 4 × 9 = 36
5 × 9 = 45 6 × 9 = 54 7 × 9 = 63 8 × 9 = 72
9 × 9 = 81从上面的口诀口有没有看到从1到9任何一个数和9相乘的积,个位数和十位数的和还是等于9。
你看上面的:0 + 9 =9;1 + 8 = 9;2 + 7 = 9;3 + 6 = 9;
4 + 5 = 9;5 + 4 = 9;6 + 3 = 9;7 + 2 = 9;8 + 1 = 9下面我们再做一些复杂一点的乘法:
18 × 12 = ? 27 × 12 = ? 36 × 12 = ? 45 × 12 = ?
54 × 12 = ? 63 × 12 = ? 72 × 12 = ? 81 × 12 = ?
关于两位数的乘法,上面的题目中,前面的乘数都是9的倍数,而且个位和十位的和都等于9。
这样我们能不能找到一种简便的算法呢?也就是把两位数的乘法变成一位数的乘法呢?
我们先把上面这些数变一变。
18 = 1 × 10 + 8;27 = 2 × 10 + 7;36 = 3 × 10 + 6;
45 = 4 × 10 + 5;54 = 5 × 10 + 4;63 = 6 × 10 + 3;
72 = 7 × 10 + 2;81 = 8 × 10 + 1;
我们再把上面的数变一变
1 × 10 + 8 = 1 × 9 + 1+8 = 1 × 9 + 9 = 1 × 9 + 9 = 2 × 9
当然如果知道口诀你们可以直接把18 = 2 × 9同样的方法你们可以拆出下面的数,也可以背口诀27 = 3 × 9 ; 36 = 4 × 9 ;45 = 5 × 9
54 = 6 × 9 ; 63 = 7 × 9 ;72 = 8 × 9
81 = 9 × 9
为了找到计算上面问题的方法,我们把上面的式子再变一次。
18 = 2×(10-1);27 = 3×(10-1);36 = 4×(10-1)
45 = 5×(10-1);54 = 6×(10-1);63 = 7×(10-1)
72 = 8×(10-1);81 = 9×(10-1)
现在我们来算上面的问题:
18 × 12 = 2×(10-1)× 12
= 2 ×(12 ×10 - 12)
= 2 ×(120- 12)
120 - 12 = 108;
这样就有了
18 × 12 = 2 × 108 = 216
是不是把一个两位数的乘法变成了一位数的乘法?
而且可以通过口算就得出结果?我用这种方法教威威算乘法,他只需要我算这一个,后边的题目就自己会算了。
上面我们的计算好象很麻烦,其实现在总结一下就简单了。
看下一个题目:
27 × 12 = 3×(10-1)× 12 = 3 ×(120- 12)
= 3 × 108 = 324
36 × 12 = 4×(10-1)× 12 = 4 ×(120- 12)
= 4 × 108 = 432发现什么规律没有?下面的题目好象不用算了,都是把前面的数加1再乘108
45 × 12 = 5 × 108 = 540
54 × 12 = 6 × 108 = 648
63 × 12 = 7 × 108 = 756
72 × 12 = 8 × 108 = 864
81 × 12 = 9 × 108 = 972
我们再看看上面的计算结果,发现什么了吗?
我们把一个两位数乘法变成了一位数的乘法。其中一个乘数的个位和十位的和等于9,这样变化以后的数中一位数的那个乘数,都是正好比前面的乘数大1。
而后面的一个两位数也有一个特点,就是一个连续数(12),1和2是连续的。
能不能找到一种更简便的计算方法呢?
为了找到一种更简便的算法。我在这里引入一个新的名词——补数。
什么是补数呢?
1 + 9 = 10;2 + 8 = 10;3 + 7 = 10;4 + 6 = 10;5 + 5 = 10;
6 + 4 = 10;7 + 3 = 10;8 + 2 = 10;9 + 1 = 10;
从上面的几个加法可见,如果两个数的和等于10,那么这两个数就互为补数。
也就是说1和9为补数,2和8为补数,3和7为补数,4和6为补数,5的补数还是5就不用记了,只要记4个就行了。
现在我们再看看上面的计算结果:
拿一个 63 × 12 = 7 × 108 = 756 举例吧
结果的最前面一个数是7(不用管它是什么位),是不是正好等于第一个乘数(63)中前面的数加1? 6 + 1 = 7
结果的后两位怎么算出来的呢?如果拿这个7去乘后面那个乘数(12)的最后一位的补数(8)会是什么?7 × 8 = 56
呵呵,我们现在不用再分解了,只要把第一个乘数(63)中前面的数加1就是结果的最前面的数,再把这个数乘以后面那个乘数(12)的最后一位的补数(8)就得到结果的后两位。
这样行吗?如果行的话,那可真是太快了,真的是速算了。
试一试其他的题:
18 × 12 =
第一个乘数(18)的前面的数加1:1 + 1 =2 ——结果最前面的数
拿2去乘第二个乘数(12)的后面的数(2)的补数(8):2×8=16
结果就是 216。看一看上面对吗?
27 × 12 =
结果最前面的数——2 + 1 =3
结果最后面的数——3 ×8 = 24
结果 324
36 × 12 =
结果最前面的数——3 + 1 =4
结果最后面的数——4 ×8 = 32
结果 432
45 × 12 =
结果最前面的数——4 + 1 =5
结果最后面的数——5 ×8 = 40
结果 540
54 × 12 =
结果最前面的数——5 + 1 =6
结果最后面的数——6 ×8 = 48
结果 648
63 × 12 =
结果最前面的数——6 + 1 =7
结果最后面的数——7 ×8 = 56
结果 756
72 × 12 =
结果最前面的数——7 + 1 =8
结果最后面的数——8 ×8 = 64
结果 864
81 × 12 =
结果最前面的数——8 + 1 =9
结果最后面的数——9 ×8 = 72
结果 972
计算结果是不是和上面的方法一样?从结果中还能看出什么?
是不是计算结果的三位数的和还是等于9或者是9的倍数?
自己算一下看是不是?
看我这篇文章,下面我给你们出几个题,看你们掌握了方法没有。
54 × 34 = ? 18 × 78 = ? 36 × 56 = ?
72 × 89 = ? 45 × 67 = ? 27 × 45 = ? 81 × 23 = ?
上面的题目如果再扩展一下,把后面的连续数扩大到多位数。
如:123、234、345、2345、34567、123456、23456789等等
看一看有没有什么运算规律,或许你们都能找出快速的计算方法。
如果能的话,象
63 × 2345678 =
这样的题目你们用口算就能快速计算出结果来。

阅读全文

与博士妈妈速算法相关的资料

热点内容
安卓怎么用支付宝交违章罚款 浏览:665
php面向对象的程序设计 浏览:504
数据挖掘算法书籍推荐 浏览:894
投诉联通用什么app 浏览:150
web服务器变更ip地址 浏览:954
java正则表达式验证邮箱 浏览:360
成熟商务男装下载什么软件app 浏览:609
加密2h代表长度是多少厘米 浏览:23
拍卖程序员 浏览:101
电脑的图片放在哪个文件夹 浏览:274
unsignedintjava 浏览:216
编译器下载地址 浏览:42
什么是面对对象编程 浏览:708
b站服务器什么时候恢复 浏览:721
6p相当于安卓机什么水准 浏览:498
能否给隐藏相册加密 浏览:598
糖心app改什么名 浏览:825
战地1控服务器如何部署 浏览:396
xp还原系统输入命令 浏览:325
mysql命令行版本 浏览:305