❶ 进程调度算法
调度算指:根据系统资源配策略所规定资源配算
、先先服务短作业(进程)优先调度算
1.
先先服务调度算先先服务(FCFS)调度算种简单调度算该算既用于作业调度
用于进程调度FCFS算比较利于作业(进程)利于短作业(进程)由知本算适合于CPU繁忙型作业
利于I/O繁忙型作业(进程)
2.
短作业(进程)优先调度算短作业(进程)优先调度算(SJ/PF)指短作业或短进程优先调度算该算既用于作业调度
用于进程调度其作业利;能保证紧迫性作业(进程)及处理;作业短估算
二、高优先权优先调度算
1.
优先权调度算类型照顾紧迫性作业使进入系统便获优先处理引入高优先权优先(FPF)调度算
算用批处理系统作作业调度算作种操作系统进程调度用于实系统其用于作业调度
备队列若干优先权高作业装入内存其用于进程调度处理机配给绪队列优先权高进程
进步该算两种:
1)非抢占式优先权算
2)抢占式优先权调度算(高性能计算机操作系统)
2.
优先权类型
于高优先权优先调度算其核于:使用静态优先权态优先权
及何确定进程优先权
3.
高响应比优先调度算
弥补短作业优先算足我引入态优先权使作业优先等级随着等待间增加速率a提高
该优先权变化规律描述:优先权=(等待间+要求服务间)/要求服务间;即
=(响应间)/要求服务间
三、基于间片轮转调度算
1.
间片轮转间片轮转般用于进程调度每调度CPU配队首进程并令其执行间片
执行间片用完由记器发钟断请求该进程停止并送往绪队列末尾;依循环
2.
级反馈队列调度算
级反馈队列调度算级反馈队列调度算必事先知道各种进程所需要执行间目前公认种较进程调度算
其实施程:
1)
设置绪队列并各队列赋予同优先级优先权越高队列
每进程所规定执行间片越
2)
新进程进入内存首先放入第队列末尾按FCFS原则排队等候调度
能间片完便撤离;未完转入第二队列末尾同等待调度……
作业(进程)第队列依第n队列(队列)便按第n队列间片轮转运行
3)
仅第队列空闲调度程序才调度第二队列进程运行;仅第1第(i-1)队列空
才调度第i队列进程运行并执行相应间片轮转
4)
处理机处理第i队列某进程新进程进入优先权较高队列
则新队列抢占运行处理机并运行进程放第i队列队尾
❷ (操作系统)编写进程调度算法程序
#include<iostream>
#include<string>
#include<iomanip>
#include<windows.h>
using namespace std;
typedef struct Process
{ string id;
int arrive_time;
int sever_time;
int finish_time;
int turnover_time;
Process * next;
}Process,* Linkp; class FCFS_schele
{ public: FCFS_schele()
{
Creat_queue();
}
~FCFS_schele();
void Creat_queue();
void Insert_queue();
void orderInsert_queue();
void Out_queue();
void Printall();
void Sort_queue();
Process Gethead();
private:
Linkp head,tail;
int num;
Process Creat_process();
};///////////////////////////////////////////////////////方法的具体实现void FCFS_schele::Creat_queue()
{ head=new Process;
head->next=0;
tail=head;
num=0;
}
ostream& operator <<(ostream& out,Process& a) //对插入流运算符<<进行重载
{ out<<"process id:"<<a.id <<" arrivetime:"<<a.arrive_time
<<" severtime:"<<a.sever_time<<endl;
return(out);
}Process FCFS_schele::Creat_process()
{ Process a;
cout<<"please input process id"<<num+1<<":";
cin>>a.id ;
cout<<"please input process arrivetime:";
cin>>a.arrive_time ;
cout<<"please input process severtime:";
cin>>a.sever_time ;
a.finish_time=0;
a.turnover_time=0;
a.next =0;
return(a);
} void FCFS_schele::Insert_queue ()
{ Linkp p;
p=new Process;
*p=Creat_process();
if(num==0)
{p->finish_time=p->arrive_time+p->sever_time;<br> p->turnover_time=p->finish_time-p->arrive_time ;<br> }
else
{p->finish_time=tail->finish_time + p->sever_time ;<br> p->turnover_time=p->finish_time - p->arrive_time ;<br> }
tail->next=p;
tail=p;
num++;
}
void FCFS_schele::Out_queue() //进程调度出队
{ Linkp p;
p=head->next;
if(!p) cout<<"empty!\n";
else
{ head->next=p->next;
if(p->next==NULL) tail=head;
cout<<"process id:"<<p->id<<" arrivetime:"<<p->arrive_time
<<" severtime:"<<p->sever_time<<" finishtime:"<<p->finish_time
<<" turnovertime:"<<p->turnover_time <<endl;
delete p;
num--;
}
}
Process FCFS_schele::Gethead()throw(int)
{ Linkp p;
p=head->next;
if(p) return(*p);
else throw 1; //当队空无法返回Process类型返回值时抛出异常错误整形值1
}
void FCFS_schele::Printall()
//打印进程队列所有进程信息
{ Linkp p;
float sum_wghtime=0;
p=head->next;
cout<<" Process Information\n";
cout<<"process id arrivetime severtime finishtime turnovertime weightime\n";
while(p)
{ cout<<p->id<<setw(14)<<p->arrive_time
<<setw(14)<<p->sever_time<<setw(14)<<p->finish_time<<setw(14)<<p->turnover_time
<<setw(14)<<float(p->turnover_time)/float(p->sever_time )<<endl;
sum_wghtime=sum_wghtime+(float)p->turnover_time/p->sever_time;
p=p->next;
}
cout<<"平均带权周转时间为:"<<sum_wghtime/num<<endl;
}
void FCFS_schele::Sort_queue ()
//采用选择法将队列中的进程按servertime长短进行换值不换址的排序{ Linkp location,search,record,track;
Process temp;
track=head->next;
location=track->next ;
while(location && location->next )
{ record=search=location;
while(search)
{ if(search->sever_time <record->sever_time ) record=search;
search=search->next ;
} if(record!=location)
{
temp=*record;
record->arrive_time =location->arrive_time ;
record->id =location->id ;
record->sever_time =location->sever_time ;
location->id =temp.id;
location->sever_time =temp.sever_time ;
location->arrive_time =temp.arrive_time ;
location->finish_time =track->finish_time + location->sever_time ;
location->turnover_time =location->finish_time - location->arrive_time ;
}
track=location;
location=location->next ;
}
if(tail==location)
{tail->finish_time = track->finish_time +tail->sever_time ;<br> tail->turnover_time =tail->finish_time -tail->arrive_time ;<br> }}
FCFS_schele::~FCFS_schele ()
{ Linkp p;
while(p=head)
{
head=head->next ;
delete p;
}
cout<<"the storage of memory has been distory!\n";
} void FCFS_schele::orderInsert_queue () //进程插入排序
{ Linkp p,pr;
p=new Process;
*p=Creat_process(); if(num==0)
{
head->next=p;
tail=p;
p->finish_time =p->arrive_time + p->sever_time ;
p->turnover_time =p->finish_time - p->arrive_time ;
}
else
{
pr=head->next ;
while(pr->next && p->sever_time >= pr->next->sever_time )
pr=pr->next;
if(pr->next==0)
{
p->finish_time = tail->finish_time + p->sever_time ;
p->turnover_time =p->finish_time - p->arrive_time ;
tail->next=p;
tail=p;
}
else
{
p->next =pr->next ;
pr->next=p;
while(p)
{
p->finish_time =pr->finish_time + p->sever_time ;
p->turnover_time = p->finish_time - p->arrive_time ;
pr=p;
p=p->next ;
}
}
}
num++;
} void main()
{
// DWORD start=GetTickCount();
FCFS_schele os;
os.orderInsert_queue ();
os.orderInsert_queue ();
os.orderInsert_queue ();
os.orderInsert_queue ();
os.orderInsert_queue ();
// os.orderInsert_queue ();
// os.orderInsert_queue ();
os.Printall ();
// os.Sort_queue ();
os.Sort_queue ();
os.Printall ();
os.Out_queue ();
os.Out_queue ();
os.Out_queue ();
os.Out_queue ();
/* try{
cout<<os.Gethead () ;
}
catch(int i)
{ if(i==1) cout<<"empty!\n";
}*/
//
// DWORD end=GetTickCount();
// cout<<"spend time:"<<(end-start)<<endl;
/*
os.Out_queue ();
*/
}
❸ 进程调度的算法
算法总是把处理机分配给最先进入就绪队列的进程,一个进程一旦分得处理机,便一直执行下去,直到该进程完成或阻塞时,才释放处理机。
例如,有三个进程P1、P2和P3先后进入就绪队列,它们的执行期分别是21、6和3个单位时间,
执行情况如下图:
对于P1、P2、P3的周转时间为21、27、30,平均周转时间为26。
可见,FIFO算法服务质量不佳,容易引起作业用户不满,常作为一种辅助调度算法。 最短CPU运行期优先调度算法(SCBF--Shortest CPU Burst First)
该算法从就绪队列中选出下一个“CPU执行期最短”的进程,为之分配处理机。
例如,在就绪队列中有四个进程P1、P2、P3和P4,它们的下一个执行期分别是16、12、4和3个单位时间,执行情况如下图:
P1、P2、P3和P4的周转时间分别为35、19、7、3,平均周转时间为16。
该算法虽可获得较好的调度性能,但难以准确地知道下一个CPU执行期,而只能根据每一个进程的执行历史来预测。 前几种算法主要用于批处理系统中,不能作为分时系统中的主调度算法,在分时系统中,都采用时间片轮转法。
简单轮转法:系统将所有就绪进程按FIFO规则排队,按一定的时间间隔把处理机分配给队列中的进程。这样,就绪队列中所有进程均可获得一个时间片的处理机而运行。
多级队列方法:将系统中所有进程分成若干类,每类为一级。 多级反馈队列方式是在系统中设置多个就绪队列,并赋予各队列以不同的优先权。
❹ 进程调度算法
FCFS调度算法属于不可剥夺算法。从表面上看,它对所有作业都是公平的,但若一个长作业先到达系统,就会使后面许多短作业等待很长时间,因此它不能作为分时系统和实时系统的主要调度策略。但它常被结合在其他调度策略中使用。例如,在使用优先级作为调度策略的系统中,往往对多个具有相同优先级的进程按FCFS原则处理。
FCFS调度算法的特点是算法简单,但效率低; 对长作业比较有利,但对短作业不利(相对SJF和高响应比);
FCFS调度算法有利于CPU繁忙型作业,而不利于I/O繁忙型作业。
短作业优先调度算法是一个非抢占策略,他的原则是下一次选择预计处理时间最短的进程,因此短进程将会越过长作业,跳至队列头。该算法即可用于作业调度,也可用于进程调度。 但是他对长作业不利,不能保证紧迫性作业(进程)被及时处理,作业的长短只是被估算出来的。
缺点:
该算法对长作业不利,SJF调度算法中长作业的周转时间会增加。更严重的是,如果有一长作业进入系统的后备队列,由于调度程序总是优先调度那些 (即使是后进来的)短作业,将导致长作业长期不被调度(“饥饿”现象,注意区分“死锁”。后者是系统环形等待,前者是调度策略问题)。
该算法完全未考虑作业的紧迫程度,因而不能保证紧迫性作业会被及时处理。
由于作业的长短只是根据用户所提供的估计执行时间而定的,而用户又可能会有意或无意地缩短其作业的估计运行时间,致使该算法不一定能真正做到短作业优先调度。
SJF调度算法的平均等待时间、平均周转时间最少。
高响应比优先调度算法既考虑作业的执行时间也考虑作业的等待时间,综合了先来先服务和最短作业优先两种算法的特点。
该算法中的响应比是指作业等待时间与运行比值,响应比公式定义如下:
响应比 =(等待时间+要求服务时间)/ 要求服务时间,即RR=(w+s)/s=1+w/s,因此 响应比一定是大于等于1的。
短作业与先后次序的兼顾,且不会使长作业长期得不到服务。
响应比计算系统开销,增加系统开销。
高响应比优先调度算法适合批处理系统,主要用于作业调度。
为了实现 RR 调度,我们将就绪队列视为进程的 FIFO 队列。新进程添加到就绪队列的尾部。CPU 调度程序从就绪队列中选择第一个进程,将定时器设置在一个时间片后中断,最后分派这个进程。
接下来,有两种情况可能发生。进程可能只需少于时间片的 CPU 执行。对于这种情况,进程本身会自动释放 CPU。调度程序接着处理就绪队列的下一个进程。否则,如果当前运行进程的 CPU 执行大于一个时间片,那么定时器会中断,进而中断操作系统。然后,进行上下文切换,再将进程加到就绪队列的尾部,接着 CPU 调度程序会选择就绪队列内的下一个进程。
采用 RR 策略的平均等待时间通常较长。
在 RR 调度算法中,没有进程被连续分配超过一个时间片的 CPU(除非它是唯一可运行的进程)。如果进程的 CPU 执行超过一个时间片,那么该进程会被抢占,并被放回到就绪队列。因此, RR调度算法是抢占的。
算法描述
1、进程在进入待调度的队列等待时,首先进入优先级最高的Q1等待。
2、首先调度优先级高的队列中的进程。若高优先级中队列中已没有调度的进程,则调度次优先级队列中的进程。例如:Q1,Q2,Q3三个队列,当且仅当在Q1中没有进程等待时才去调度Q2,同理,只有Q1,Q2都为空时才会去调度Q3。
3、对于同一个队列中的各个进程,按照FCFS分配时间片调度。比如Q1队列的时间片为N,那么Q1中的作业在经历了N个时间片后若还没有完成,则进入Q2队列等待,若Q2的时间片用完后作业还不能完成,一直进入下一级队列,直至完成。
4、在最后一个队列QN中的各个进程,按照时间片轮转分配时间片调度。
5、在低优先级的队列中的进程在运行时,又有新到达的作业,此时须立即把正在运行的进程放回当前队列的队尾,然后把处理机分给高优先级进程。换而言之,任何时刻,只有当第1~i-1队列全部为空时,才会去执行第i队列的进程(抢占式)。特别说明,当再度运行到当前队列的该进程时,仅分配上次还未完成的时间片,不再分配该队列对应的完整时间片。
❺ 求进程调度算法
第一部分: 实时调度算法介绍
对于什么是实时系统,POSIX 1003.b作了这样的定义:指系统能够在限定的响应时间内提供所需水平的服务。而一个由Donald Gillies提出的更加为大家接受的定义是:一个实时系统是指计算的正确性不仅取决于程序的逻辑正确性,也取决于结果产生的时间,如果系统的时间约束条件得不到满足,将会发生系统出错。
实时系统根据其对于实时性要求的不同,可以分为软实时和硬实时两种类型。硬实时系统指系统要有确保的最坏情况下的服务时间,即对于事件的响应时间的截止期限是无论如何都必须得到满足。比如航天中的宇宙飞船的控制等就是现实中这样的系统。其他的所有有实时特性的系统都可以称之为软实时系统。如果明确地来说,软实时系统就是那些从统计的角度来说,一个任务(在下面的论述中,我们将对任务和进程不作区分)能够得到有确保的处理时间,到达系统的事件也能够在截止期限到来之前得到处理,但违反截止期限并不会带来致命的错误,像实时多媒体系统就是一种软实时系统。
一个计算机系统为了提供对于实时性的支持,它的操作系统必须对于CPU和其他资源进行有效的调度和管理。在多任务实时系统中,资源的调度和管理更加复杂。本文下面将先从分类的角度对各种实时任务调度算法进行讨论,然后研究普通的 Linux操作系统的进程调度以及各种实时Linux系统为了支持实时特性对普通Linux系统所做的改进。最后分析了将Linux操作系统应用于实时领域中时所出现的一些问题,并总结了各种实时Linux是如何解决这些问题的。
1. 实时CPU调度算法分类
各种实时操作系统的实时调度算法可以分为如下三种类别[Wang99][Gopalan01]:基于优先级的调度算法(Priority-driven scheling-PD)、基于CPU使用比例的共享式的调度算法(Share-driven scheling-SD)、以及基于时间的进程调度算法(Time-driven scheling-TD),下面对这三种调度算法逐一进行介绍。
1.1. 基于优先级的调度算法
基于优先级的调度算法给每个进程分配一个优先级,在每次进程调度时,调度器总是调度那个具有最高优先级的任务来执行。根据不同的优先级分配方法,基于优先级的调度算法可以分为如下两种类型[Krishna01][Wang99]:
静态优先级调度算法:
这种调度算法给那些系统中得到运行的所有进程都静态地分配一个优先级。静态优先级的分配可以根据应用的属性来进行,比如任务的周期,用户优先级,或者其它的预先确定的策略。RM(Rate-Monotonic)调度算法是一种典型的静态优先级调度算法,它根据任务的执行周期的长短来决定调度优先级,那些具有小的执行周期的任务具有较高的优先级。
动态优先级调度算法:
这种调度算法根据任务的资源需求来动态地分配任务的优先级,其目的就是在资源分配和调度时有更大的灵活性。非实时系统中就有很多这种调度算法,比如短作业优先的调度算法。在实时调度算法中, EDF算法是使用最多的一种动态优先级调度算法,该算法给就绪队列中的各个任务根据它们的截止期限(Deadline)来分配优先级,具有最近的截止期限的任务具有最高的优先级。
1.2. 基于比例共享调度算法
虽然基于优先级的调度算法简单而有效,但这种调度算法提供的是一种硬实时的调度,在很多情况下并不适合使用这种调度算法:比如象实时多媒体会议系统这样的软实时应用。对于这种软实时应用,使用一种比例共享式的资源调度算法(SD算法)更为适合。
比例共享调度算法指基于CPU使用比例的共享式的调度算法,其基本思想就是按照一定的权重(比例)对一组需要调度的任务进行调度,让它们的执行时间与它们的权重完全成正比。
我们可以通过两种方法来实现比例共享调度算法[Nieh01]:第一种方法是调节各个就绪进程出现在调度队列队首的频率,并调度队首的进程执行;第二种做法就是逐次调度就绪队列中的各个进程投入运行,但根据分配的权重调节分配个每个进程的运行时间片。
比例共享调度算法可以分为以下几个类别:轮转法、公平共享、公平队列、彩票调度法(Lottery)等。
比例共享调度算法的一个问题就是它没有定义任何优先级的概念;所有的任务都根据它们申请的比例共享CPU资源,当系统处于过载状态时,所有的任务的执行都会按比例地变慢。所以为了保证系统中实时进程能够获得一定的CPU处理时间,一般采用一种动态调节进程权重的方法。
1.3. 基于时间的进程调度算法
对于那些具有稳定、已知输入的简单系统,可以使用时间驱动(Time-driven:TD)的调度算法,它能够为数据处理提供很好的预测性。这种调度算法本质上是一种设计时就确定下来的离线的静态调度方法。在系统的设计阶段,在明确系统中所有的处理情况下,对于各个任务的开始、切换、以及结束时间等就事先做出明确的安排和设计。这种调度算法适合于那些很小的嵌入式系统、自控系统、传感器等应用环境。
这种调度算法的优点是任务的执行有很好的可预测性,但最大的缺点是缺乏灵活性,并且会出现有任务需要被执行而CPU却保持空闲的情况。
2. 通用Linux系统中的CPU调度
通用Linux系统支持实时和非实时两种进程,实时进程相对于普通进程具有绝对的优先级。对应地,实时进程采用SCHED_FIFO或者SCHED_RR调度策略,普通的进程采用SCHED_OTHER调度策略。
在调度算法的实现上,Linux中的每个任务有四个与调度相关的参数,它们是rt_priority、policy、priority(nice)、counter。调度程序根据这四个参数进行进程调度。
在SCHED_OTHER 调度策略中,调度器总是选择那个priority+counter值最大的进程来调度执行。从逻辑上分析,SCHED_OTHER调度策略存在着调度周期(epoch),在每一个调度周期中,一个进程的priority和counter值的大小影响了当前时刻应该调度哪一个进程来执行,其中 priority是一个固定不变的值,在进程创建时就已经确定,它代表了该进程的优先级,也代表这该进程在每一个调度周期中能够得到的时间片的多少; counter是一个动态变化的值,它反映了一个进程在当前的调度周期中还剩下的时间片。在每一个调度周期的开始,priority的值被赋给 counter,然后每次该进程被调度执行时,counter值都减少。当counter值为零时,该进程用完自己在本调度周期中的时间片,不再参与本调度周期的进程调度。当所有进程的时间片都用完时,一个调度周期结束,然后周而复始。另外可以看出Linux系统中的调度周期不是静态的,它是一个动态变化的量,比如处于可运行状态的进程的多少和它们priority值都可以影响一个epoch的长短。值得注意的一点是,在2.4以上的内核中, priority被nice所取代,但二者作用类似。
可见SCHED_OTHER调度策略本质上是一种比例共享的调度策略,它的这种设计方法能够保证进程调度时的公平性--一个低优先级的进程在每一个epoch中也会得到自己应得的那些CPU执行时间,另外它也提供了不同进程的优先级区分,具有高priority值的进程能够获得更多的执行时间。
对于实时进程来说,它们使用的是基于实时优先级rt_priority的优先级调度策略,但根据不同的调度策略,同一实时优先级的进程之间的调度方法有所不同:
SCHED_FIFO:不同的进程根据静态优先级进行排队,然后在同一优先级的队列中,谁先准备好运行就先调度谁,并且正在运行的进程不会被终止直到以下情况发生:1.被有更高优先级的进程所强占CPU;2.自己因为资源请求而阻塞;3.自己主动放弃CPU(调用sched_yield);
SCHED_RR:这种调度策略跟上面的SCHED_FIFO一模一样,除了它给每个进程分配一个时间片,时间片到了正在执行的进程就放弃执行;时间片的长度可以通过sched_rr_get_interval调用得到;
由于Linux系统本身是一个面向桌面的系统,所以将它应用于实时应用中时存在如下的一些问题:
Linux系统中的调度单位为10ms,所以它不能够提供精确的定时;
当一个进程调用系统调用进入内核态运行时,它是不可被抢占的;
Linux内核实现中使用了大量的封中断操作会造成中断的丢失;
由于使用虚拟内存技术,当发生页出错时,需要从硬盘中读取交换数据,但硬盘读写由于存储位置的随机性会导致随机的读写时间,这在某些情况下会影响一些实时任务的截止期限;
虽然Linux进程调度也支持实时优先级,但缺乏有效的实时任务的调度机制和调度算法;它的网络子系统的协议处理和其它设备的中断处理都没有与它对应的进程的调度关联起来,并且它们自身也没有明确的调度机制;
3. 各种实时Linux系统
3.1. RT-Linux和RTAI
RT -Linux是新墨西哥科技大学(New Mexico Institute of Technology)的研究成果[RTLinuxWeb][Barabanov97]。它的基本思想是,为了在Linux系统中提供对于硬实时的支持,它实现了一个微内核的小的实时操作系统(我们也称之为RT-Linux的实时子系统),而将普通Linux系统作为一个该操作系统中的一个低优先级的任务来运行。另外普通Linux系统中的任务可以通过FIFO和实时任务进行通信。RT-Linux的框架如图 1所示:
图 1 RT-Linux结构
RT -Linux的关键技术是通过软件来模拟硬件的中断控制器。当Linux系统要封锁CPU的中断时时,RT-Linux中的实时子系统会截取到这个请求,把它记录下来,而实际上并不真正封锁硬件中断,这样就避免了由于封中断所造成的系统在一段时间没有响应的情况,从而提高了实时性。当有硬件中断到来时, RT-Linux截取该中断,并判断是否有实时子系统中的中断例程来处理还是传递给普通的Linux内核进行处理。另外,普通Linux系统中的最小定时精度由系统中的实时时钟的频率决定,一般Linux系统将该时钟设置为每秒来100个时钟中断,所以Linux系统中一般的定时精度为 10ms,即时钟周期是10ms,而RT-Linux通过将系统的实时时钟设置为单次触发状态,可以提供十几个微秒级的调度粒度。
RT-Linux实时子系统中的任务调度可以采用RM、EDF等优先级驱动的算法,也可以采用其他调度算法。
RT -Linux对于那些在重负荷下工作的专有系统来说,确实是一个不错的选择,但他仅仅提供了对于CPU资源的调度;并且实时系统和普通Linux系统关系不是十分密切,这样的话,开发人员不能充分利用Linux系统中已经实现的功能,如协议栈等。所以RT-Linux适合与工业控制等实时任务功能简单,并且有硬实时要求的环境中,但如果要应用与多媒体处理中还需要做大量的工作。
意大利的RTAI( Real-Time Application Interface )源于RT-Linux,它在设计思想上和RT-Linux完全相同。它当初设计目的是为了解决RT-Linux难于在不同Linux版本之间难于移植的问题,为此,RTAI在 Linux 上定义了一个实时硬件抽象层,实时任务通过这个抽象层提供的接口和Linux系统进行交互,这样在给Linux内核中增加实时支持时可以尽可能少地修改 Linux的内核源代码。
3.2. Kurt-Linux
Kurt -Linux由Kansas大学开发,它可以提供微秒级的实时精度[KurtWeb] [Srinivasan]。不同于RT-Linux单独实现一个实时内核的做法,Kurt -Linux是在通用Linux系统的基础上实现的,它也是第一个可以使用普通Linux系统调用的基于Linux的实时系统。
Kurt-Linux将系统分为三种状态:正常态、实时态和混合态,在正常态时它采用普通的Linux的调度策略,在实时态只运行实时任务,在混合态实时和非实时任务都可以执行;实时态可以用于对于实时性要求比较严格的情况。
为了提高Linux系统的实时特性,必须提高系统所支持的时钟精度。但如果仅仅简单地提高时钟频率,会引起调度负载的增加,从而严重降低系统的性能。为了解决这个矛盾, Kurt-Linux采用UTIME所使用的提高Linux系统中的时钟精度的方法[UTIMEWeb]:它将时钟芯片设置为单次触发状态(One shot mode),即每次给时钟芯片设置一个超时时间,然后到该超时事件发生时在时钟中断处理程序中再次根据需要给时钟芯片设置一个超时时间。它的基本思想是一个精确的定时意味着我们需要时钟中断在我们需要的一个比较精确的时间发生,但并非一定需要系统时钟频率达到此精度。它利用CPU的时钟计数器TSC (Time Stamp Counter)来提供精度可达CPU主频的时间精度。
对于实时任务的调度,Kurt-Linux采用基于时间(TD)的静态的实时CPU调度算法。实时任务在设计阶段就需要明确地说明它们实时事件要发生的时间。这种调度算法对于那些循环执行的任务能够取得较好的调度效果。
Kurt -Linux相对于RT-Linux的一个优点就是可以使用Linux系统自身的系统调用,它本来被设计用于提供对硬实时的支持,但由于它在实现上只是简单的将Linux调度器用一个简单的时间驱动的调度器所取代,所以它的实时进程的调度很容易受到其它非实时任务的影响,从而在有的情况下会发生实时任务的截止期限不能满足的情况,所以也被称作严格实时系统(Firm Real-time)。目前基于Kurt-Linux的应用有:ARTS(ATM Reference Traffic System)、多媒体播放软件等。另外Kurt-Linux所采用的这种方法需要频繁地对时钟芯片进行编程设置。
3.3. RED-Linux
RED -Linux是加州大学Irvine分校开发的实时Linux系统[REDWeb][ Wang99],它将对实时调度的支持和Linux很好地实现在同一个操作系统内核中。它同时支持三种类型的调度算法,即:Time-Driven、 Priority-Dirven、Share-Driven。
为了提高系统的调度粒度,RED-Linux从RT-Linux那儿借鉴了软件模拟中断管理器的机制,并且提高了时钟中断频率。当有硬件中断到来时,RED-Linux的中断模拟程序仅仅是简单地将到来的中断放到一个队列中进行排队,并不执行真正的中断处理程序。
另外为了解决Linux进程在内核态不能被抢占的问题, RED-Linux在Linux内核的很多函数中插入了抢占点原语,使得进程在内核态时,也可以在一定程度上被抢占。通过这种方法提高了内核的实时特性。
RED-Linux的设计目标就是提供一个可以支持各种调度算法的通用的调度框架,该系统给每个任务增加了如下几项属性,并将它们作为进程调度的依据:
Priority:作业的优先级;
Start-Time:作业的开始时间;
Finish-Time:作业的结束时间;
Budget:作业在运行期间所要使用的资源的多少;
通过调整这些属性的取值及调度程序按照什么样的优先顺序来使用这些属性值,几乎可以实现所有的调度算法。这样的话,可以将三种不同的调度算法无缝、统一地结合到了一起。
❻ 进程调度算法模拟程序设计
public class PrivilegeProcess {
public static void main(String[] args) {
MyQueue myqueue = new MyQueue();//声明队列
PCB[] pcb = {new PCB(001,8,1),new PCB(002,7,9),new PCB(003,3,8),new PCB(004,1,7),new PCB(005,7,4)};
PCB para = new PCB();
for(int i=0;i<pcb.length;i++){//初始化后首先执行一次排序,这里使用的是选择排序,优先级高的先入队
for(int j=i;j<pcb.length;j++){
if(pcb[i].privilege < pcb[j].privilege){
para = pcb[i];
pcb[i] = pcb[j];
pcb[j] = para;
}
}
}
System.out.println("初次入队后各进程的顺序:");
for(int i=0;i<pcb.length;i++){
System.out.println("初次入队后 # processname : " + pcb[i].name + " totaltime : " + pcb[i].totaltime + " privilege :" + pcb[i].privilege);
}
System.out.println();
myqueue.start(pcb);
}
}
class MyQueue {
int index = 0;
PCB[] pc = new PCB[5];
PCB[] pc1 = new PCB[4];
PCB temp = new PCB();
public void enQueue(PCB process){//入队算法
if(index==5){
System.out.println("out of bounds !");
return;
}
pc[index] = process;
index++;
}
public PCB deQueue(){//出队算法
if(index==0)
return null;
for(int i=0;i<pc1.length;i++){
pc1[i] = pc[i+1];
}
index--;
temp = pc[0];
for(int i=0;i<pc1.length;i++){
pc[i] = pc1[i];
}
return temp;
}
public void start(PCB[] pc){//显示进程表算法
while(pc[0].isNotFinish==true||pc[1].isNotFinish==true||pc[2].isNotFinish==true||pc[3].isNotFinish==true||pc[4].isNotFinish==true){
//*注意:||运算符,所有表达式都为false结果才为false,否则为true
for(int i=0;i<pc.length;i++){
pc[i].run(this);
}
System.out.println();
for(int i=0;i<pc.length;i++){//所有进程每执行完一次时间片长度的运行就重新按优先级排列一次
for(int j=i;j<pc.length;j++){
if(pc[i].privilege < pc[j].privilege){
temp = pc[i];
pc[i] = pc[j];
pc[j] = temp;
}
}
}
}
}
}
class PCB {//声明进程类
int name,totaltime,runtime,privilege;
boolean isNotFinish;
public PCB(){
}
public PCB(int name, int totaltime, int privilege){
this.name = name;//进程名
this.totaltime = totaltime;//总时间
this.privilege = privilege;//优先级别
this.runtime = 2;//时间片,这里设值为2
this.isNotFinish = true;//是否执行完毕
System.out.println("初始值: processname : " + name + " totaltime : " + totaltime + " privilege :" + privilege );
System.out.println();
}
public void run (MyQueue mq){//进程的基于时间片的执行算法
if(totaltime>1){
totaltime-=runtime;//在总时间大于1的时候,总时间=总时间-时间片
privilege--;
System.out.println(" processname : " + name + " remaintime : " + totaltime + " privilege :" + privilege );
}else if(totaltime==1){
totaltime--;//在总时间为1时,执行时间为1
privilege--;
System.out.println(" processname : " + name + " remaintime : " + totaltime + " privilege :" + privilege );
}else{
isNotFinish = false;//总时间为0,将isNotFinish标记置为false
}
if(isNotFinish==true){
mq.deQueue();
mq.enQueue(this);
}
}
}
❼ 求进程调度先来先服务算法,短进程优先算法完整c语言代码
/*(一)进程调度
进程调度算法有FIFO,优先数调度算法,时间片轮转调度算法,分级调度算法,
输入:进程流文件,其中存储的是一系列要执行的进程,
每个作业包括三个数据项:
进程名 所需时间 优先数(0级最高)
输出:
进程执行流 等待时间 平均等待时间
本程序包括:FIFO,优先数调度算法,时间片轮转调度算法
进程流文件process_stream.txt
测试数据:
p0 16 2
p1 5 1
p2 4 3
p3 8 0
p4 9 4
p5 7 6
VC++调试通过
*/
#include <stdio.h>
#include <string.h>
#include <iostream.h>
#include <stdlib.h>
const int Quatum=2;//定义时间片的长度为2秒
const int MAXPCB=100;//定义最大进程数
//定义进程结构体
typedef struct node
{
char name[20];//进程名
int time; //进程运行时间
int privilege;//进程优先级(静态)
int finished;//进程完成标志,0-未完成,1-已完成
int wait_time;//进程等待时间
}pcb;
pcb pcbs[MAXPCB];
int quantiry;//进程流文件中的进程总数
void initial()
{
int i;
for (i=0;i<MAXPCB;i++)
{
strcpy(pcbs[i].name,"");
pcbs[i].time=0;
pcbs[i].privilege=0;
pcbs[i].finished=0;
pcbs[i].wait_time=0;
}
quantiry=0;
}
int readData()
{
FILE *fp;
char fname[20];
int i;
cout<<"请输入进程流文件名:"<<endl;
cin>>fname;
if ((fp=fopen(fname,"r"))==NULL)
{
cout<<"错误,文件打不开,请检查文件名"<<endl;
}
else
{
while (!feof(fp))
{
fscanf(fp,"%s %d %d %d",pcbs[quantiry].name,
&pcbs[quantiry].time,&pcbs[quantiry].privilege);
quantiry++;
}
//输出所读入得数据
cout<<"输出所读入的数据"<<endl;
cout<<"进程流文件中的进程总数="<<quantiry<<endl;
cout<<"进程名 所需时间 优先数"<<endl;
for (i=0;i<quantiry;i++)
{
cout<<" "<<pcbs[i].name<<" "<<pcbs[i].time<<" "<<pcbs[i].privilege<<endl;
}
return 1;
}
return 0;
}
//重置数据,以供另一个算法使用
void init()
{
int i;
for (i=0;i<MAXPCB;i++)
{
pcbs[i].finished=0;
pcbs[i].wait_time=0;
}
}
void FIFO()
{
int i,j;
int total;
//输出FIFO算法执行流
cout<<endl<<"---------------------------------------------------------------"<<endl;
cout<<"FIFO算法执行流:"<<endl;
cout<<"进程名 等待时间"<<endl;
for (i=0;i<quantiry;i++)
{
cout<<" "<<pcbs[i].name<<" "<<pcbs[i].wait_time<<endl;
for (j=i+1;j<quantiry;j++)
{
pcbs[j].wait_time+=pcbs[i].time;
}
}
total=0;
for (i=0;i<quantiry;i++)
{
total+=pcbs[i].wait_time;
}
cout<<"总等待时间:"<<total<<" "<<"平均等待时间:"<<total/quantiry<<endl;
}
//优先度调度算法
void privilege()
{
int i,j,p;
int passed_time=0;
int total;
int queue[MAXPCB];
int current_privielege=1000;
for (i=0;i<quantiry;i++)
{
current_privielege=1000;
for (j=0;j<quantiry;j++)
{
if ((pcbs[j].finished==0)&&(pcbs[j].privilege<current_privielege))
{
p=j;
current_privielege=pcbs[j].privilege;
}
}
queue[i]=p;
pcbs[p].finished=1;
pcbs[p].wait_time+=passed_time;
passed_time+=pcbs[p].time;
}
//输出优先数调度执行流
cout<<endl<<"-----------------------------------------"<<endl;
cout<<"优先数调度执行流:"<<endl;
cout<<"进程名 等待时间"<<endl;
for (i=0;i<quantiry;i++)
{
cout<<" "<<pcbs[queue[i]].name<<" "<<pcbs[queue[i]].wait_time<<"--"<<queue[i]<<endl;
}
total=0;
for (i=0;i<quantiry;i++)
{
total+=pcbs[i].wait_time;
}
cout<<"总等待时间:"<<total<<" 平均等待时间:"<<total/quantiry<<endl;
}
//时间片轮转调度算法
void timer()
{
int i,j,sum,flag=1;
int passed_time=0;
int max_time=0;
int round=0;
int queue[1000];
int total=0;
while(flag==1)
{
flag=0;
for (i=0;i<quantiry;i++)
{
if (pcbs[i].finished==0)
{
flag=1;
queue[total]=i;
total++;
if (pcbs[i].time<=Quatum*(round+1))
pcbs[i].finished=1;
}
}
round++;
}
cout<<endl<<"---------------------------------------------------------------"<<endl;
cout<<"时间片轮转调度执行流:";
for(i=0;i<total;i++)
{
cout<<pcbs[queue[i]].name<<" ";
}
cout<<endl;
cout<<"进程名 结束时间 运行时间 等待时间"<<endl;
sum=0;
for (i=0;i<quantiry;i++)
{
for(j=total-1;j>=0;j--)//从轮转调度执行流序列由后往前比较,找到同名进程即可计算其完成时间
{
if (strcmp(pcbs[queue[j]].name,pcbs[i].name)==0)
{
cout<<" "<<pcbs[i].name<<" "<<(j+1)*Quatum<<" ";
cout<<pcbs[i].time<<" "<<(j+1)*Quatum-pcbs[i].time<<endl;
sum+=(j+1)*Quatum-pcbs[i].time;
break;
}
}
}
cout<<"总等待时间:"<<sum<<" "<<"平均等待时间:"<<sum/quantiry<<endl;
}
//显示版权信息函数
void version()
{
cout<<endl<<endl;
cout<<" ┏━━━━━━━━━━━━━━━━━━━━━━━┓"<<endl;
cout<<" ┃ 进程调度模拟系统 ┃"<<endl;
cout<<" ┠───────────────────────┨"<<endl;
cout<<" ┃ version 2011 ┃"<<endl;
cout<<" ┗━━━━━━━━━━━━━━━━━━━━━━━┛"<<endl;
cout<<endl<<endl;
}
//主函数
int main()
{
int flag;
version();
initial();
flag=readData();
if(flag==1){
FIFO();
init();
privilege();
init();
timer();
}
cout<<endl;
system("pause");
return 0;
}
❽ 求进程调度算法
进程调度源程序如下:
jingchendiao.cpp
#include "stdio.h"
#include <stdlib.h>
#include <conio.h>
#define getpch(type) (type*)malloc(sizeof(type))
#define NULL 0
struct pcb { /* 定义进程控制块PCB */
char name[10];
char state;
int super;
int ntime;
int rtime;
struct pcb* link;
}*ready=NULL,*p;
typedef struct pcb PCB;
sort() /* 建立对进程进行优先级排列函数*/
{
PCB *first, *second;
int insert=0;
if((ready==NULL)||((p->super)>(ready->super))) /*优先级最大者,插入队首*/
{
p->link=ready;
ready=p;
}
else /* 进程比较优先级,插入适当的位置中*/
{
first=ready;
second=first->link;
while(second!=NULL)
{
if((p->super)>(second->super)) /*若插入进程比当前进程优先数大,*/
{ /*插入到当前进程前面*/
p->link=second;
first->link=p;
second=NULL;
insert=1;
}
else /* 插入进程优先数最低,则插入到队尾*/
{
first=first->link;
second=second->link;
}
}
if(insert==0) first->link=p;
}
}
input() /* 建立进程控制块函数*/
{
int i,num;
clrscr(); /*清屏*/
printf("\n 请输入进程号?");
scanf("%d",&num);
for(i=0;i<num;i++)
{
printf("\n 进程号No.%d:\n",i);
p=getpch(PCB);
printf("\n 输入进程名:");
scanf("%s",p->name);
printf("\n 输入进程优先数:");
scanf("%d",&p->super);
printf("\n 输入进程运行时间:");
scanf("%d",&p->ntime);
printf("\n");
p->rtime=0;p->state='w';
p->link=NULL;
sort(); /* 调用sort函数*/
}
}
int space()
{
int l=0; PCB* pr=ready;
while(pr!=NULL)
{
l++;
pr=pr->link;
}
return(l);
}
disp(PCB * pr) /*建立进程显示函数,用于显示当前进程*/
{
printf("\n qname \t state \t super \t ndtime \t runtime \n");
printf("|%s\t",pr->name);
printf("|%c\t",pr->state);
printf("|%d\t",pr->super);
printf("|%d\t",pr->ntime);
printf("|%d\t",pr->rtime);
printf("\n");
}
check() /* 建立进程查看函数 */
{
PCB* pr;
printf("\n **** 当前正在运行的进程是:%s",p->name); /*显示当前运行进程*/
disp(p);
pr=ready;
printf("\n ****当前就绪队列状态为:\n"); /*显示就绪队列状态*/
while(pr!=NULL)
{
disp(pr);
pr=pr->link;
}
}
destroy() /*建立进程撤消函数(进程运行结束,撤消进程)*/
{
printf("\n 进程 [%s] 已完成.\n",p->name);
free(p);
}
running() /* 建立进程就绪函数(进程运行时间到,置就绪状态*/
{
(p->rtime)++;
if(p->rtime==p->ntime)
destroy(); /* 调用destroy函数*/
else
{
(p->super)--;
p->state='w';
sort(); /*调用sort函数*/
}
}
main() /*主函数*/
{
int len,h=0;
char ch;
input();
len=space();
while((len!=0)&&(ready!=NULL))
{
ch=getchar();
h++;
printf("\n The execute number:%d \n",h);
p=ready;
ready=p->link;
p->link=NULL;
p->state='R';
check();
running();
printf("\n 按任一键继续......");
ch=getchar();
}
printf("\n\n 进程已经完成.\n");
ch=getchar();
}