导航:首页 > 源码编译 > id3算法的流程图

id3算法的流程图

发布时间:2023-08-17 12:52:17

❶ 大数据经典算法解析(1)一C4.5算法

姓名:崔升    学号:14020120005

【嵌牛导读】:

C4.5作为一种经典的处理大数据的算法,是我们在学习互联网大数据时不得不去了解的一种常用算法

【嵌牛鼻子】:经典大数据算法之C4.5简单介绍

【嵌牛提问】:C4.5是一种怎么的算法,其决策机制靠什么实现?

【嵌牛正文】:

决策树模型:

决策树是一种通过对特征属性的分类对样本进行分类的树形结构,包括有向边与三类节点:

根节点(root node),表示第一个特征属性,只有出边没有入边;

内部节点(internal node),表示特征属性,有一条入边至少两条出边

叶子节点(leaf node),表示类别,只有一条入边没有出边。

上图给出了(二叉)决策树的示例。决策树具有以下特点:

对于二叉决策树而言,可以看作是if-then规则集合,由决策树的根节点到叶子节点对应于一条分类规则;

分类规则是 互斥并且完备 的,所谓 互斥 即每一条样本记录不会同时匹配上两条分类规则,所谓 完备 即每条样本记录都在决策树中都能匹配上一条规则。

分类的本质是对特征空间的划分,如下图所示,

决策树学习:

决策树学习的本质是从训练数据集中归纳出一组分类规则[2]。但随着分裂属性次序的不同,所得到的决策树也会不同。如何得到一棵决策树既对训练数据有较好的拟合,又对未知数据有很好的预测呢?

首先,我们要解决两个问题:

如何选择较优的特征属性进行分裂?每一次特征属性的分裂,相当于对训练数据集进行再划分,对应于一次决策树的生长。ID3算法定义了目标函数来进行特征选择。

什么时候应该停止分裂?有两种自然情况应该停止分裂,一是该节点对应的所有样本记录均属于同一类别,二是该节点对应的所有样本的特征属性值均相等。但除此之外,是不是还应该其他情况停止分裂呢?

2. 决策树算法

特征选择

特征选择指选择最大化所定义目标函数的特征。下面给出如下三种特征(Gender, Car Type, Customer ID)分裂的例子:

图中有两类类别(C0, C1),C0: 6是对C0类别的计数。直观上,应选择Car Type特征进行分裂,因为其类别的分布概率具有更大的倾斜程度,类别不确定程度更小。

为了衡量类别分布概率的倾斜程度,定义决策树节点tt的不纯度(impurity),其满足:不纯度越小,则类别的分布概率越倾斜;下面给出不纯度的的三种度量:

其中,p(ck|t)p(ck|t)表示对于决策树节点tt类别ckck的概率。这三种不纯度的度量是等价的,在等概率分布是达到最大值。

为了判断分裂前后节点不纯度的变化情况,目标函数定义为信息增益(information gain):

I(⋅)I(⋅)对应于决策树节点的不纯度,parentparent表示分裂前的父节点,NN表示父节点所包含的样本记录数,aiai表示父节点分裂后的某子节点,N(ai)N(ai)为其计数,nn为分裂后的子节点数。

特别地,ID3算法选取 熵值 作为不纯度I(⋅)I(⋅)的度量,则

cc指父节点对应所有样本记录的类别;AA表示选择的特征属性,即aiai的集合。那么,决策树学习中的信息增益ΔΔ等价于训练数据集中 类与特征的互信息 ,表示由于得知特征AA的信息训练数据集cc不确定性减少的程度。

在特征分裂后,有些子节点的记录数可能偏少,以至于影响分类结果。为了解决这个问题,CART算法提出了只进行特征的二元分裂,即决策树是一棵二叉树;C4.5算法改进分裂目标函数,用信息增益比(information gain ratio)来选择特征:

因而,特征选择的过程等同于计算每个特征的信息增益,选择最大信息增益的特征进行分裂。此即回答前面所提出的第一个问题(选择较优特征)。ID3算法设定一阈值,当最大信息增益小于阈值时,认为没有找到有较优分类能力的特征,没有往下继续分裂的必要。根据最大表决原则,将最多计数的类别作为此叶子节点。即回答前面所提出的第二个问题(停止分裂条件)。

决策树生成:

ID3算法的核心是根据信息增益最大的准则,递归地构造决策树;算法流程如下:

如果节点满足停止分裂条件(所有记录属同一类别 or 最大信息增益小于阈值),将其置为叶子节点;

选择信息增益最大的特征进行分裂;

重复步骤1-2,直至分类完成。

C4.5算法流程与ID3相类似,只不过将信息增益改为 信息增益比 。

3. 决策树剪枝

过拟合

生成的决策树对训练数据会有很好的分类效果,却可能对未知数据的预测不准确,即决策树模型发生过拟合(overfitting)——训练误差(training error)很小、泛化误差(generalization error,亦可看作为test error)较大。下图给出训练误差、测试误差(test error)随决策树节点数的变化情况:

可以观察到,当节点数较小时,训练误差与测试误差均较大,即发生了欠拟合(underfitting)。当节点数较大时,训练误差较小,测试误差却很大,即发生了过拟合。只有当节点数适中是,训练误差居中,测试误差较小;对训练数据有较好的拟合,同时对未知数据有很好的分类准确率。

发生过拟合的根本原因是分类模型过于复杂,可能的原因如下:

训练数据集中有噪音样本点,对训练数据拟合的同时也对噪音进行拟合,从而影响了分类的效果;

决策树的叶子节点中缺乏有分类价值的样本记录,也就是说此叶子节点应被剪掉。

剪枝策略

为了解决过拟合,C4.5通过剪枝以减少模型的复杂度。[2]中提出一种简单剪枝策略,通过极小化决策树的整体损失函数(loss function)或代价函数(cost function)来实现,决策树TT的损失函数为:

其中,C(T)C(T)表示决策树的训练误差,αα为调节参数,|T||T|为模型的复杂度。当模型越复杂时,训练的误差就越小。上述定义的损失正好做了两者之间的权衡。

如果剪枝后损失函数减少了,即说明这是有效剪枝。具体剪枝算法可以由动态规划等来实现。

4. 参考资料

[1] Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introction to Data Mining .

[2] 李航,《统计学习方法》.

[3] Naren Ramakrishnan, The Top Ten Algorithms in Data Mining.

❷ 简述ID3算法基本原理和步骤

1.基本原理:
以信息增益/信息熵为度量,用于决策树结点的属性选择的标准,每次优先选取信息量最多(信息增益最大)的属性,即信息熵值最小的属性,以构造一颗熵值下降最快的决策树,到叶子节点处的熵值为0。(信息熵 无条件熵 条件熵 信息增益 请查找其他资料理解)
决策树将停止生长条件及叶子结点的类别取值:
①数据子集的每一条数据均已经归类到每一类,此时,叶子结点取当前样本类别值。
②数据子集类别仍有混乱,但已经找不到新的属性进行结点分解,此时,叶子结点按当前样本中少数服从多数的原则进行类别取值。
③数据子集为空,则按整个样本中少数服从多数的原则进行类别取值。

步骤:
理解了上述停止增长条件以及信息熵,步骤就很简单

❸ 决策树ID3,C4.5,CART算法中某一属性分类后,是否能运用该属性继续分类

决策树主要有ID3,C4.5,CART等形式。ID3选取信息增益的属性递归进行分类,C4.5改进为使用信息增益率来选取分类属性。CART是Classfication and Regression Tree的缩写。表明CART不仅可以进行分类,也可以进行回归。其中使用基尼系数选取分类属性。以下主要介绍ID3和CART算法。
ID3算法:
信息熵: H(X)=-sigma(对每一个x)(plogp) H(Y|X)=sigma(对每一个x)(pH(Y|X=xi))
信息增益:H(D)-H(D|X) H(D)是整个数据集的熵
信息增益率:(H(D)-H(D|X))/H(X)
算法流程:(1)对每一个属性计算信息增益,若信息增益小于阈值,则将该支置为叶节点,选择其中个数最多的类标签作为该类的类标签。否则,选择其中最大的作为分类属 性。
(2)若各个分支中都只含有同一类数据,则将这支置为叶子节点。
否则 继续进行(1)。
CART算法:
基尼系数:Gini(p)=sigma(每一个类)p(1-p)
回归树:属性值为连续实数。将整个输入空间划分为m块,每一块以其平均值作为输出。f(x)=sigma(每一块)Cm*I(x属于Rm)
回归树生成:(1)选取切分变量和切分点,将输入空间分为两份。
(2)每一份分别进行第一步,直到满足停止条件。
切分变量和切分点选取:对于每一个变量进行遍历,从中选择切分点。选择一个切分点满足分类均方误差最小。然后在选出所有变量中最小分类误差最小的变量作为切分 变量。
分类树:属性值为离散值。
分类树生成:(1)根据每一个属性的每一个取值,是否取该值将样本分成两类,计算基尼系数。选择基尼系数最小的特征和属性值,将样本分成两份。
(2)递归调用(1)直到无法分割。完成CART树生成。

决策树剪枝策略:
预剪枝(树提前停止生长)和后剪枝(完全生成以后减去一些子树提高预测准确率)
降低错误率剪枝:自下而上对每一个内部节点比较减去以其为叶节点和子树的准确率。如果减去准确率提高,则减去,依次类推知道准确率不在提高。
代价复杂度剪枝:从原始决策树T0开始生成一个子树序列{T0、T1、T2、...、Tn},其中Ti+1是从Ti总产生,Tn为根节点。每次均从Ti中 减去具有最小误差增长率的子树。然后通过 交叉验证比较序列中各子树的效果选择最优决策树。

❹ 5.10 决策树与ID3算法

https://blog.csdn.net/dorisi_h_n_q/article/details/82787295

决策树(decision tree)是一个树结构(可以是二叉树或非二叉树)。决策过程是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果。

决策树的关键步骤是分裂属性。就是在某节点处按某一特征属性的不同划分构造不同的分支,目标是让各个分裂子集尽可能地“纯”。即让一个分裂子集中待分类项属于同一类别。

简而言之,决策树的划分原则就是:将无序的数据变得更加有序

分裂属性分为三种不同的情况 :

构造决策树的关键性内容是进行属性选择度量,属性选择度量(找一种计算方式来衡量怎么划分更划算)是一种选择分裂准则,它决定了拓扑结构及分裂点split_point的选择。

属性选择度量算法有很多,一般使用自顶向下递归分治法,并采用不回溯的贪心策略。这里介绍常用的ID3算法。

贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,所做出的是在某种意义上的局部最优解。

此概念最早起源于物理学,是用来度量一个热力学系统的无序程度。
而在信息学里面,熵是对不确定性的度量。
在1948年,香农引入了信息熵,将其定义为离散随机事件出现的概率,一个系统越是有序,信息熵就越低,反之一个系统越是混乱,它的信息熵就越高。所以信息熵可以被认为是系统有序化程度的一个度量。

熵定义为信息的期望值,在明晰这个概念之前,我们必须知道信息的定义。如果待分类的事务可能划分在多个分类之中,则符号x的信息定义为:

在划分数据集之前之后信息发生的变化称为信息增益。
知道如何计算信息增益,就可计算每个特征值划分数据集获得的信息增益,获得信息增益最高的特征就是最好的选择。

条件熵 表示在已知随机变量的条件下随机变量的不确定性,随机变量X给定的条件下随机变量Y的条
件熵(conditional entropy) ,定义X给定条件下Y的条件概率分布的熵对X的数学期望:

根据上面公式,我们假设将训练集D按属性A进行划分,则A对D划分的期望信息为

则信息增益为如下两者的差值

ID3算法就是在每次需要分裂时,计算每个属性的增益率,然后选择增益率最大的属性进行分裂

步骤:1. 对当前样本集合,计算所有属性的信息增益;

是最原始的决策树分类算法,基本流程是,从一棵空数出发,不断的从决策表选取属性加入数的生长过程中,直到决策树可以满足分类要求为止。CLS算法存在的主要问题是在新增属性选取时有很大的随机性。ID3算法是对CLS算法的改进,主要是摒弃了属性选择的随机性。

基于ID3算法的改进,主要包括:使用信息增益比替换了信息增益下降度作为属性选择的标准;在决策树构造的同时进行剪枝操作;避免了树的过度拟合情况;可以对不完整属性和连续型数据进行处理;使用k交叉验证降低了计算复杂度;针对数据构成形式,提升了算法的普适性。

信息增益值的大小相对于训练数据集而言的,并没有绝对意义,在分类问题困难时,也就是说在训练数据集经验熵大的时候,信息增益值会偏大,反之信息增益值会偏小,使用信息增益比可以对这个问题进行校正,这是特征选择
的另一个标准。
特征对训练数据集的信息增益比定义为其信息增益gR( D,A) 与训练数据集的经验熵g(D,A)之比 :

gR(D,A) = g(D,A) / H(D)

sklearn的决策树模型就是一个CART树。是一种二分递归分割技术,把当前样本划分为两个子样本,使得生成的每个非叶子节点都有两个分支,因此,CART算法生成的决策树是结构简洁的二叉树。
分类回归树算法(Classification and Regression Trees,简称CART算法)是一种基于二分递归分割技术的算法。该算法是将当前的样本集,分为两个样本子集,这样做就使得每一个非叶子节点最多只有两个分支。因此,使用CART
算法所建立的决策树是一棵二叉树,树的结构简单,与其它决策树算法相比,由该算法生成的决策树模型分类规则较少。

CART分类算法的基本思想是:对训练样本集进行递归划分自变量空间,并依次建立决策树模型,然后采用验证数据的方法进行树枝修剪,从而得到一颗符合要求的决策树分类模型。

CART分类算法和C4.5算法一样既可以处理离散型数据,也可以处理连续型数据。CART分类算法是根据基尼(gini)系
数来选择测试属性,gini系数的值越小,划分效果越好。设样本集合为T,则T的gini系数值可由下式计算:

CART算法优点:除了具有一般决策树的高准确性、高效性、模式简单等特点外,还具有一些自身的特点。
如,CART算法对目标变量和预测变量在概率分布上没有要求,这样就避免了因目标变量与预测变量概率分布的不同造成的结果;CART算法能够处理空缺值,这样就避免了因空缺值造成的偏差;CART算法能够处理孤立的叶子结点,这样可以避免因为数据集中与其它数据集具有不同的属性的数据对进一步分支产生影响;CART算法使用的是二元分支,能够充分地运用数据集中的全部数据,进而发现全部树的结构;比其它模型更容易理解,从模型中得到的规则能获得非常直观的解释。

CART算法缺点:CART算法是一种大容量样本集挖掘算法,当样本集比较小时不够稳定;要求被选择的属性只能产生两个子结点,当类别过多时,错误可能增加得比较快。

sklearn.tree.DecisionTreeClassifier

1.安装graphviz.msi , 一路next即可

ID3算法就是在每次需要分裂时,计算每个属性的增益率,然后选择增益率最大的属性进行分裂

按照好友密度划分的信息增益:

按照是否使用真实头像H划分的信息增益

**所以,按先按好友密度划分的信息增益比按真实头像划分的大。应先按好友密度划分。

❺ 决策树的算法

C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:
1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;
2) 在树构造过程中进行剪枝;
3) 能够完成对连续属性的离散化处理;
4) 能够对不完整数据进行处理。
C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。此外,C4.5只适合于能够驻留于内存的数据集,当训练集大得无法在内存容纳时程序无法运行。
具体算法步骤如下;
1创建节点N
2如果训练集为空,在返回节点N标记为Failure
3如果训练集中的所有记录都属于同一个类别,则以该类别标记节点N
4如果候选属性为空,则返回N作为叶节点,标记为训练集中最普通的类;
5for each 候选属性 attribute_list
6if 候选属性是连续的then
7对该属性进行离散化
8选择候选属性attribute_list中具有最高信息增益率的属性D
9标记节点N为属性D
10for each 属性D的一致值d
11由节点N长出一个条件为D=d的分支
12设s是训练集中D=d的训练样本的集合
13if s为空
14加上一个树叶,标记为训练集中最普通的类
15else加上一个有C4.5(R - {D},C,s)返回的点 背景:
分类与回归树(CART——Classification And Regression Tree)) 是一种非常有趣并且十分有效的非参数分类和回归方法。它通过构建二叉树达到预测目的。
分类与回归树CART 模型最早由Breiman 等人提出,已经在统计领域和数据挖掘技术中普遍使用。它采用与传统统计学完全不同的方式构建预测准则,它是以二叉树的形式给出,易于理解、使用和解释。由CART 模型构建的预测树在很多情况下比常用的统计方法构建的代数学预测准则更加准确,且数据越复杂、变量越多,算法的优越性就越显着。模型的关键是预测准则的构建,准确的。
定义:
分类和回归首先利用已知的多变量数据构建预测准则, 进而根据其它变量值对一个变量进行预测。在分类中, 人们往往先对某一客体进行各种测量, 然后利用一定的分类准则确定该客体归属那一类。例如, 给定某一化石的鉴定特征, 预测该化石属那一科、那一属, 甚至那一种。另外一个例子是, 已知某一地区的地质和物化探信息, 预测该区是否有矿。回归则与分类不同, 它被用来预测客体的某一数值, 而不是客体的归类。例如, 给定某一地区的矿产资源特征, 预测该区的资源量。

❻ 常见决策树分类算法都有哪些

在机器学习中,有一个体系叫做决策树,决策树能够解决很多问题。在决策树中,也有很多需要我们去学习的算法,要知道,在决策树中,每一个算法都是实用的算法,所以了解决策树中的算法对我们是有很大的帮助的。在这篇文章中我们就给大家介绍一下关于决策树分类的算法,希望能够帮助大家更好地去理解决策树。
1.C4.5算法
C4.5算法就是基于ID3算法的改进,这种算法主要包括的内容就是使用信息增益率替换了信息增益下降度作为属性选择的标准;在决策树构造的同时进行剪枝操作;避免了树的过度拟合情况;可以对不完整属性和连续型数据进行处理;使用k交叉验证降低了计算复杂度;针对数据构成形式,提升了算法的普适性等内容,这种算法是一个十分使用的算法。
2.CLS算法
CLS算法就是最原始的决策树分类算法,基本流程是,从一棵空数出发,不断的从决策表选取属性加入数的生长过程中,直到决策树可以满足分类要求为止。CLS算法存在的主要问题是在新增属性选取时有很大的随机性。
3.ID3算法
ID3算法就是对CLS算法的最大改进是摒弃了属性选择的随机性,利用信息熵的下降速度作为属性选择的度量。ID3是一种基于信息熵的决策树分类学习算法,以信息增益和信息熵,作为对象分类的衡量标准。ID3算法结构简单、学习能力强、分类速度快适合大规模数据分类。但同时由于信息增益的不稳定性,容易倾向于众数属性导致过度拟合,算法抗干扰能力差。
3.1.ID3算法的优缺点
ID3算法的优点就是方法简单、计算量小、理论清晰、学习能力较强、比较适用于处理规模较大的学习问题。缺点就是倾向于选择那些属性取值比较多的属性,在实际的应用中往往取值比较多的属性对分类没有太大价值、不能对连续属性进行处理、对噪声数据比较敏感、需计算每一个属性的信息增益值、计算代价较高。
3.2.ID3算法的核心思想
根据样本子集属性取值的信息增益值的大小来选择决策属性,并根据该属性的不同取值生成决策树的分支,再对子集进行递归调用该方法,当所有子集的数据都只包含于同一个类别时结束。最后,根据生成的决策树模型,对新的、未知类别的数据对象进行分类。
在这篇文章中我们给大家介绍了决策树分类算法的具体内容,包括有很多种算法。从中我们不难发现决策树的算法都是经过不不断的改造趋于成熟的。所以说,机器学习的发展在某种程度上就是由于这些算法的进步而来的。

❼ 用python实现红酒数据集的ID3,C4.5和CART算法

ID3算法介绍
ID3算法全称为迭代二叉树3代算法(Iterative Dichotomiser 3)
该算法要先进行特征选择,再生成决策树,其中特征选择是基于“信息增益”最大的原则进行的。
但由于决策树完全基于训练集生成的,有可能对训练集过于“依赖”,即产生过拟合现象。因此在生成决策树后,需要对决策树进行剪枝。剪枝有两种形式,分别为前剪枝(Pre-Pruning)和后剪枝(Post-Pruning),一般采用后剪枝。
信息熵、条件熵和信息增益
信息熵:来自于香农定理,表示信息集合所含信息的平均不确定性。信息熵越大,表示不确定性越大,所含的信息量也就越大。
设x 1 , x 2 , x 3 , . . . x n {x_1, x_2, x_3, ...x_n}x
1

,x
2

,x
3

,...x
n

为信息集合X的n个取值,则x i x_ix
i

的概率:
P ( X = i ) = p i , i = 1 , 2 , 3 , . . . , n P(X=i) = p_i, i=1,2,3,...,n
P(X=i)=p
i

,i=1,2,3,...,n

信息集合X的信息熵为:
H ( X ) = − ∑ i = 1 n p i log ⁡ p i H(X) =- \sum_{i=1}^{n}{p_i}\log{p_i}
H(X)=−
i=1

n

p
i

logp
i

条件熵:指已知某个随机变量的情况下,信息集合的信息熵。
设信息集合X中有y 1 , y 2 , y 3 , . . . y m {y_1, y_2, y_3, ...y_m}y
1

,y
2

,y
3

,...y
m

组成的随机变量集合Y,则随机变量(X,Y)的联合概率分布为
P ( x = i , y = j ) = p i j P(x=i,y=j) = p_{ij}
P(x=i,y=j)=p
ij

条件熵:
H ( X ∣ Y ) = ∑ j = 1 m p ( y j ) H ( X ∣ y j ) H(X|Y) = \sum_{j=1}^m{p(y_j)H(X|y_j)}
H(X∣Y)=
j=1

m

p(y
j

)H(X∣y
j

)

H ( X ∣ y j ) = − ∑ j = 1 m p ( y j ) ∑ i = 1 n p ( x i ∣ y j ) log ⁡ p ( x i ∣ y j ) H(X|y_j) = - \sum_{j=1}^m{p(y_j)}\sum_{i=1}^n{p(x_i|y_j)}\log{p(x_i|y_j)}
H(X∣y
j

)=−
j=1

m

p(y
j

)
i=1

n

p(x
i

∣y
j

)logp(x
i

∣y
j

)
和贝叶斯公式:
p ( x i y j ) = p ( x i ∣ y j ) p ( y j ) p(x_iy_j) = p(x_i|y_j)p(y_j)
p(x
i

y
j

)=p(x
i

∣y
j

)p(y
j

)
可以化简条件熵的计算公式为:
H ( X ∣ Y ) = ∑ j = 1 m ∑ i = 1 n p ( x i , y j ) log ⁡ p ( x i ) p ( x i , y j ) H(X|Y) = \sum_{j=1}^m \sum_{i=1}^n{p(x_i, y_j)\log\frac{p(x_i)}{p(x_i, y_j)}}
H(X∣Y)=
j=1

m

i=1

n

p(x
i

,y
j

)log
p(x
i

,y
j

)
p(x
i

)

信息增益:信息熵-条件熵,用于衡量在知道已知随机变量后,信息不确定性减小越大。
d ( X , Y ) = H ( X ) − H ( X ∣ Y ) d(X,Y) = H(X) - H(X|Y)
d(X,Y)=H(X)−H(X∣Y)

python代码实现
import numpy as np
import math

def calShannonEnt(dataSet):
""" 计算信息熵 """
labelCountDict = {}
for d in dataSet:
label = d[-1]
if label not in labelCountDict.keys():
labelCountDict[label] = 1
else:
labelCountDict[label] += 1
entropy = 0.0
for l, c in labelCountDict.items():
p = 1.0 * c / len(dataSet)
entropy -= p * math.log(p, 2)
return entropy

def filterSubDataSet(dataSet, colIndex, value):
"""返回colIndex特征列label等于value,并且过滤掉改特征列的数据集"""
subDataSetList = []
for r in dataSet:
if r[colIndex] == value:
newR = r[:colIndex]
newR = np.append(newR, (r[colIndex + 1:]))
subDataSetList.append(newR)
return np.array(subDataSetList)

def chooseFeature(dataSet):
""" 通过计算信息增益选择最合适的特征"""
featureNum = dataSet.shape[1] - 1
entropy = calShannonEnt(dataSet)
bestInfoGain = 0.0
bestFeatureIndex = -1
for i in range(featureNum):
uniqueValues = np.unique(dataSet[:, i])
condition_entropy = 0.0

for v in uniqueValues: #计算条件熵
subDataSet = filterSubDataSet(dataSet, i, v)
p = 1.0 * len(subDataSet) / len(dataSet)
condition_entropy += p * calShannonEnt(subDataSet)
infoGain = entropy - condition_entropy #计算信息增益

if infoGain >= bestInfoGain: #选择最大信息增益
bestInfoGain = infoGain
bestFeatureIndex = i
return bestFeatureIndex

def creatDecisionTree(dataSet, featNames):
""" 通过训练集生成决策树 """
featureName = featNames[:] # 拷贝featNames,此处不能直接用赋值操作,否则新变量会指向旧变量的地址
classList = list(dataSet[:, -1])
if len(set(classList)) == 1: # 只有一个类别
return classList[0]
if dataSet.shape[1] == 1: #当所有特征属性都利用完仍然无法判断样本属于哪一类,此时归为该数据集中数量最多的那一类
return max(set(classList), key=classList.count)

bestFeatureIndex = chooseFeature(dataSet) #选择特征
bestFeatureName = featNames[bestFeatureIndex]
del featureName[bestFeatureIndex] #移除已选特征列
decisionTree = {bestFeatureName: {}}

featureValueUnique = sorted(set(dataSet[:, bestFeatureIndex])) #已选特征列所包含的类别, 通过递归生成决策树
for v in featureValueUnique:
FeatureName = featureName[:]
subDataSet = filterSubDataSet(dataSet, bestFeatureIndex, v)
decisionTree[bestFeatureName][v] = creatDecisionTree(subDataSet, FeatureName)
return decisionTree

def classify(decisionTree, featnames, featList):
""" 使用训练所得的决策树进行分类 """
classLabel = None
root = decisionTree.keys()[0]
firstGenDict = decisionTree[root]
featIndex = featnames.index(root)
for k in firstGenDict.keys():
if featList[featIndex] == k:
if isinstance(firstGenDict[k], dict): #若子节点仍是树,则递归查找
classLabel = classify(firstGenDict[k], featnames, featList)
else:
classLabel = firstGenDict[k]
return classLabel
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
下面用鸢尾花数据集对该算法进行测试。由于ID3算法只能用于标称型数据,因此用在对连续型的数值数据上时,还需要对数据进行离散化,离散化的方法稍后说明,此处为了简化,先使用每一种特征所有连续性数值的中值作为分界点,小于中值的标记为1,大于中值的标记为0。训练1000次,统计准确率均值。

from sklearn import datasets
from sklearn.model_selection import train_test_split

iris = datasets.load_iris()
data = np.c_[iris.data, iris.target]

scoreL = []
for i in range(1000): #对该过程进行10000次
trainData, testData = train_test_split(data) #区分测试集和训练集

featNames = iris.feature_names[:]
for i in range(trainData.shape[1] - 1): #对训练集每个特征,以中值为分界点进行离散化
splitPoint = np.mean(trainData[:, i])
featNames[i] = featNames[i]+'<='+'{:.3f}'.format(splitPoint)
trainData[:, i] = [1 if x <= splitPoint else 0 for x in trainData[:, i]]
testData[:, i] = [1 if x <= splitPoint else 0 for x in testData[:, i]]

decisionTree = creatDecisionTree(trainData, featNames)
classifyLable = [classify(decisionTree, featNames, td) for td in testData]
scoreL.append(1.0 * sum(classifyLable == testData[:, -1]) / len(classifyLable))
print 'score: ', np.mean(scoreL)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
输出结果为:score: 0.7335,即准确率有73%。每次训练和预测的准确率分布如下:

数据离散化
然而,在上例中对特征值离散化的划分点实际上过于“野蛮”,此处介绍一种通过信息增益最大的标准来对数据进行离散化。原理很简单,当信息增益最大时,说明用该点划分能最大程度降低数据集的不确定性。
具体步骤如下:

对每个特征所包含的数值型特征值排序
对相邻两个特征值取均值,这些均值就是待选的划分点
用每一个待选点把该特征的特征值划分成两类,小于该特征点置为1, 大于该特征点置为0,计算此时的条件熵,并计算出信息增益
选择信息使信息增益最大的划分点进行特征离散化
实现代码如下:

def filterRawData(dataSet, colIndex, value, tag):
""" 用于把每个特征的连续值按照区分点分成两类,加入tag参数,可用于标记筛选的是哪一部分数据"""
filterDataList = []
for r in dataSet:
if (tag and r[colIndex] <= value) or ((not tag) and r[colIndex] > value):
newR = r[:colIndex]
newR = np.append(newR, (r[colIndex + 1:]))
filterDataList.append(newR)
return np.array(filterDataList)

def dataDiscretization(dataSet, featName):
""" 对数据每个特征的数值型特征值进行离散化 """
featureNum = dataSet.shape[1] - 1
entropy = calShannonEnt(dataSet)

for featIndex in range(featureNum): #对于每一个特征
uniqueValues = sorted(np.unique(dataSet[:, featIndex]))
meanPoint = []

for i in range(len(uniqueValues) - 1): # 求出相邻两个值的平均值
meanPoint.append(float(uniqueValues[i+1] + uniqueValues[i]) / 2.0)
bestInfoGain = 0.0
bestMeanPoint = -1
for mp in meanPoint: #对于每个划分点
subEntropy = 0.0 #计算该划分点的信息熵
for tag in range(2): #分别划分为两类
subDataSet = filterRawData(dataSet, featIndex, mp, tag)
p = 1.0 * len(subDataSet) / len(dataSet)
subEntropy += p * calShannonEnt(subDataSet)

## 计算信息增益
infoGain = entropy - subEntropy
## 选择最大信息增益
if infoGain >= bestInfoGain:
bestInfoGain = infoGain
bestMeanPoint = mp
featName[featIndex] = featName[featIndex] + "<=" + "{:.3f}".format(bestMeanPoint)
dataSet[:, featIndex] = [1 if x <= bestMeanPoint else 0 for x in dataSet[:, featIndex]]
return dataSet, featName
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
重新对数据进行离散化,并重复该步骤1000次,同时用sklearn中的DecisionTreeClassifier对相同数据进行分类,分别统计平均准确率。运行代码如下:

from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
scoreL = []
scoreL_sk = []
for i in range(1000): #对该过程进行1000次
featNames = iris.feature_names[:]
trainData, testData = train_test_split(data) #区分测试集和训练集
trainData_tmp = .(trainData)
testData_tmp = .(testData)
discritizationData, discritizationFeatName= dataDiscretization(trainData, featNames) #根据信息增益离散化
for i in range(testData.shape[1]-1): #根据测试集的区分点离散化训练集
splitPoint = float(discritizationFeatName[i].split('<=')[-1])
testData[:, i] = [1 if x<=splitPoint else 0 for x in testData[:, i]]
decisionTree = creatDecisionTree(trainData, featNames)
classifyLable = [classify(decisionTree, featNames, td) for td in testData]
scoreL.append(1.0 * sum(classifyLable == testData[:, -1]) / len(classifyLable))

clf = DecisionTreeClassifier('entropy')
clf.fit(trainData[:, :-1], trainData[:, -1])
clf.predict(testData[:, :-1])
scoreL_sk.append(clf.score(testData[:, :-1], testData[:, -1]))

print 'score: ', np.mean(scoreL)
print 'score-sk: ', np.mean(scoreL_sk)
fig = plt.figure(figsize=(10, 4))
plt.subplot(1,2,1)
pd.Series(scoreL).hist(grid=False, bins=10)
plt.subplot(1,2,2)
pd.Series(scoreL_sk).hist(grid=False, bins=10)
plt.show()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
两者准确率分别为:
score: 0.7037894736842105
score-sk: 0.7044736842105263

准确率分布如下:

两者的结果非常一样。
(但是。。为什么根据信息熵离散化得到的准确率比直接用均值离散化的准确率还要低啊??哇的哭出声。。)

最后一次决策树图形如下:

决策树剪枝
由于决策树是完全依照训练集生成的,有可能会有过拟合现象,因此一般会对生成的决策树进行剪枝。常用的是通过决策树损失函数剪枝,决策树损失函数表示为:
C a ( T ) = ∑ t = 1 T N t H t ( T ) + α ∣ T ∣ C_a(T) = \sum_{t=1}^TN_tH_t(T) +\alpha|T|
C
a

(T)=
t=1

T

N
t

H
t

(T)+α∣T∣

其中,H t ( T ) H_t(T)H
t

(T)表示叶子节点t的熵值,T表示决策树的深度。前项∑ t = 1 T N t H t ( T ) \sum_{t=1}^TN_tH_t(T)∑
t=1
T

N
t

H
t

(T)是决策树的经验损失函数当随着T的增加,该节点被不停的划分的时候,熵值可以达到最小,然而T的增加会使后项的值增大。决策树损失函数要做的就是在两者之间进行平衡,使得该值最小。
对于决策树损失函数的理解,如何理解决策树的损失函数? - 陶轻松的回答 - 知乎这个回答写得挺好,可以按照答主的思路理解一下

C4.5算法
ID3算法通过信息增益来进行特征选择会有一个比较明显的缺点:即在选择的过程中该算法会优先选择类别较多的属性(这些属性的不确定性小,条件熵小,因此信息增益会大),另外,ID3算法无法解决当每个特征属性中每个分类都只有一个样本的情况(此时每个属性的条件熵都为0)。
C4.5算法ID3算法的改进,它不是依据信息增益进行特征选择,而是依据信息增益率,它添加了特征分裂信息作为惩罚项。定义分裂信息:
S p l i t I n f o ( X , Y ) = − ∑ i n ∣ X i ∣ ∣ X ∣ log ⁡ ∣ X i ∣ ∣ X ∣ SplitInfo(X, Y) =-\sum_i^n\frac{|X_i|}{|X|}\log\frac{|X_i|}{|X|}
SplitInfo(X,Y)=−
i

n

∣X∣
∣X
i



log
∣X∣
∣X
i



则信息增益率为:
G a i n R a t i o ( X , Y ) = d ( X , Y ) S p l i t I n f o ( X , Y ) GainRatio(X,Y)=\frac{d(X,Y)}{SplitInfo(X, Y)}
GainRatio(X,Y)=
SplitInfo(X,Y)
d(X,Y)

关于ID3和C4.5算法
在学习分类回归决策树算法时,看了不少的资料和博客。关于这两个算法,ID3算法是最早的分类算法,这个算法刚出生的时候其实带有很多缺陷:

无法处理连续性特征数据
特征选取会倾向于分类较多的特征
没有解决过拟合的问题
没有解决缺失值的问题
即该算法出生时是没有带有连续特征离散化、剪枝等步骤的。C4.5作为ID3的改进版本弥补列ID3算法不少的缺陷:

通过信息最大增益的标准离散化连续的特征数据
在选择特征是标准从“最大信息增益”改为“最大信息增益率”
通过加入正则项系数对决策树进行剪枝
对缺失值的处理体现在两个方面:特征选择和生成决策树。初始条件下对每个样本的权重置为1。
特征选择:在选取最优特征时,计算出每个特征的信息增益后,需要乘以一个**“非缺失值样本权重占总样本权重的比例”**作为系数来对比每个特征信息增益的大小
生成决策树:在生成决策树时,对于缺失的样本我们按照一定比例把它归属到每个特征值中,比例为该特征每一个特征值占非缺失数据的比重
关于C4.5和CART回归树
作为ID3的改进版本,C4.5克服了许多缺陷,但是它自身还是存在不少问题:

C4.5的熵运算中涉及了对数运算,在数据量大的时候效率非常低。
C4.5的剪枝过于简单
C4.5只能用于分类运算不能用于回归
当特征有多个特征值是C4.5生成多叉树会使树的深度加深
————————————————
版权声明:本文为CSDN博主“Sarah Huang”的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_44794704/article/details/89406612

❽ 决策树之ID3算法及其Python实现

决策树之ID3算法及其Python实现

1. 决策树背景知识
??决策树是数据挖掘中最重要且最常用的方法之一,主要应用于数据挖掘中的分类和预测。决策树是知识的一种呈现方式,决策树中从顶点到每个结点的路径都是一条分类规则。决策树算法最先基于信息论发展起来,经过几十年发展,目前常用的算法有:ID3、C4.5、CART算法等。
2. 决策树一般构建过程
??构建决策树是一个自顶向下的过程。树的生长过程是一个不断把数据进行切分细分的过程,每一次切分都会产生一个数据子集对应的节点。从包含所有数据的根节点开始,根据选取分裂属性的属性值把训练集划分成不同的数据子集,生成由每个训练数据子集对应新的非叶子节点。对生成的非叶子节点再重复以上过程,直到满足特定的终止条件,停止对数据子集划分,生成数据子集对应的叶子节点,即所需类别。测试集在决策树构建完成后检验其性能。如果性能不达标,我们需要对决策树算法进行改善,直到达到预期的性能指标。
??注:分裂属性的选取是决策树生产过程中的关键,它决定了生成的决策树的性能、结构。分裂属性选择的评判标准是决策树算法之间的根本区别。
3. ID3算法分裂属性的选择——信息增益
??属性的选择是决策树算法中的核心。是对决策树的结构、性能起到决定性的作用。ID3算法基于信息增益的分裂属性选择。基于信息增益的属性选择是指以信息熵的下降速度作为选择属性的方法。它以的信息论为基础,选择具有最高信息增益的属性作为当前节点的分裂属性。选择该属性作为分裂属性后,使得分裂后的样本的信息量最大,不确定性最小,即熵最小。
??信息增益的定义为变化前后熵的差值,而熵的定义为信息的期望值,因此在了解熵和信息增益之前,我们需要了解信息的定义。
??信息:分类标签xi 在样本集 S 中出现的频率记为 p(xi),则 xi 的信息定义为:?log2p(xi) 。
??分裂之前样本集的熵:E(S)=?∑Ni=1p(xi)log2p(xi),其中 N 为分类标签的个数。
??通过属性A分裂之后样本集的熵:EA(S)=?∑mj=1|Sj||S|E(Sj),其中 m 代表原始样本集通过属性A的属性值划分为 m 个子样本集,|Sj| 表示第j个子样本集中样本数量,|S| 表示分裂之前数据集中样本总数量。
??通过属性A分裂之后样本集的信息增益:InfoGain(S,A)=E(S)?EA(S)
??注:分裂属性的选择标准为:分裂前后信息增益越大越好,即分裂后的熵越小越好。
4. ID3算法
??ID3算法是一种基于信息增益属性选择的决策树学习方法。核心思想是:通过计算属性的信息增益来选择决策树各级节点上的分裂属性,使得在每一个非叶子节点进行测试时,获得关于被测试样本最大的类别信息。基本方法是:计算所有的属性,选择信息增益最大的属性分裂产生决策树节点,基于该属性的不同属性值建立各分支,再对各分支的子集递归调用该方法建立子节点的分支,直到所有子集仅包括同一类别或没有可分裂的属性为止。由此得到一棵决策树,可用来对新样本数据进行分类。
ID3算法流程:
(1) 创建一个初始节点。如果该节点中的样本都在同一类别,则算法终止,把该节点标记为叶节点,并用该类别标记。
(2) 否则,依据算法选取信息增益最大的属性,该属性作为该节点的分裂属性。
(3) 对该分裂属性中的每一个值,延伸相应的一个分支,并依据属性值划分样本。
(4) 使用同样的过程,自顶向下的递归,直到满足下面三个条件中的一个时就停止递归。
??A、待分裂节点的所有样本同属于一类。
??B、训练样本集中所有样本均完成分类。
??C、所有属性均被作为分裂属性执行一次。若此时,叶子结点中仍有属于不同类别的样本时,选取叶子结点中包含样本最多的类别,作为该叶子结点的分类。
ID3算法优缺点分析
优点:构建决策树的速度比较快,算法实现简单,生成的规则容易理解。
缺点:在属性选择时,倾向于选择那些拥有多个属性值的属性作为分裂属性,而这些属性不一定是最佳分裂属性;不能处理属性值连续的属性;无修剪过程,无法对决策树进行优化,生成的决策树可能存在过度拟合的情况。

❾ 决策树算法

决策树算法的算法理论和应用场景

算法理论:

我了解的决策树算法,主要有三种,最早期的ID3,再到后来的C4.5和CART这三种算法。

这三种算法的大致框架近似。

决策树的学习过程

1.特征选择

在训练数据中 众多X中选择一个特征作为当前节点分裂的标准。如何选择特征有着很多不同量化评估标准,从而衍生出不同的决策树算法。

2.决策树生成

根据选择的特征评估标准,从上至下递归生成子节点,直到数据集不可分或者最小节点满足阈值,此时决策树停止生长。

3.剪枝

决策树极其容易过拟合,一般需要通过剪枝,缩小树结构规模、缓解过拟合。剪枝技术有前剪枝和后剪枝两种。

有些算法用剪枝过程,有些没有,如ID3。

预剪枝:对每个结点划分前先进行估计,若当前结点的划分不能带来决策树的泛化性能的提升,则停止划分,并标记为叶结点。

后剪枝:现从训练集生成一棵完整的决策树,然后自底向上对非叶子结点进行考察,若该结点对应的子树用叶结点能带来决策树泛化性能的提升,则将该子树替换为叶结点。

但不管是预剪枝还是后剪枝都是用验证集的数据进行评估。

ID3算法是最早成型的决策树算法。ID3的算法核心是在决策树各个节点上应用信息增益准则来选择特征,递归构建决策树。缺点是,在选择分裂变量时容易选择分类多的特征,如ID值【值越多、分叉越多,子节点的不纯度就越小,信息增益就越大】。

ID3之所以无法 处理缺失值、无法处理连续值、不剪纸等情况,主要是当时的重点并不是这些。

C4.5算法与ID3近似,只是分裂标准从 信息增益 转变成  信息增益率。可以处理连续值,含剪枝,可以处理缺失值,这里的做法多是 概率权重。

CART:1.可以处理连续值 2.可以进行缺失值处理 3.支持剪枝 4.可以分类可以回归。

缺失值的处理是 作为一个单独的类别进行分类。

建立CART树

我们的算法从根节点开始,用训练集递归的建立CART树。

1) 对于当前节点的数据集为D,如果样本个数小于阈值或者没有特征,则返回决策子树,当前节点停止递归。

2) 计算样本集D的基尼系数, 如果基尼系数小于阈值 (说明已经很纯了!!不需要再分了!!),则返回决策树子树,当前节点停止递归。

3) 计算当前节点现有的各个特征的各个特征值对数据集D的基尼系数。

4) 在计算出来的各个特征的各个特征值对数据集D的基尼系数中,选择 基尼系数最小的特征A和对应的特征值a。根据这个最优特征和最优特征值,把数据集划分成两部分D1和D2,同时建立当前节点的左右节点,做节点的数据集D为D1,右节点的数据集D为D2。 (注:注意是二叉树,故这里的D1和D2是有集合关系的,D2=D-D1)

5) 对左右的子节点递归的调用1-4步,生成决策树。

CART采用的办法是后剪枝法,即先生成决策树,然后产生所有可能的剪枝后的CART树,然后使用交叉验证来检验各种剪枝的效果,选择泛化能力最好的剪枝策略。

应用场景

比如欺诈问题中,通过决策树算法简单分类,默认是CART的分类树,默认不剪枝。然后在出图后,自行选择合适的叶节点进行拒绝操作。

这个不剪枝是因为欺诈问题的特殊性,欺诈问题一般而言较少,如数据的万几水平,即正样本少,而整个欺诈问题需要解决的速度较快。此时只能根据业务要求,迅速针对已有的正样本情况,在控制准确率的前提下,尽可能提高召回率。这种情况下,可以使用决策树来简单应用,这个可以替代原本手工选择特征及特征阈值的情况。

阅读全文

与id3算法的流程图相关的资料

热点内容
安卓怎么用支付宝交违章罚款 浏览:665
php面向对象的程序设计 浏览:504
数据挖掘算法书籍推荐 浏览:894
投诉联通用什么app 浏览:150
web服务器变更ip地址 浏览:954
java正则表达式验证邮箱 浏览:360
成熟商务男装下载什么软件app 浏览:609
加密2h代表长度是多少厘米 浏览:23
拍卖程序员 浏览:101
电脑的图片放在哪个文件夹 浏览:274
unsignedintjava 浏览:216
编译器下载地址 浏览:42
什么是面对对象编程 浏览:708
b站服务器什么时候恢复 浏览:721
6p相当于安卓机什么水准 浏览:498
能否给隐藏相册加密 浏览:597
糖心app改什么名 浏览:824
战地1控服务器如何部署 浏览:396
xp还原系统输入命令 浏览:324
mysql命令行版本 浏览:305