导航:首页 > 源码编译 > 普里木算法

普里木算法

发布时间:2023-08-18 20:03:35

⑴ 普里姆算法

可以这么理解:因为最小生成树是包含所有顶点的所以开始lowcost先储存到第一个点的所有值,然后执行下面算法,找到最小值并记录是第几个点,比如说这个点是3,这样有了一条1-3得道路已经确定,现在从3出发找从3出发到其他顶点的路径,如果这个从3出发到达的路径长度比从1出发的短,则更新lowcost,这样使得lowcost保存一直到达该顶点的最短路径。比如1-4是5,3-4是4,则lowcost从原来的5被改为4。

⑵ 关于prim算法的时间复杂度

Prim算法的时间复杂度与网中的边数无关,适合于稠密图。

通过邻接矩阵图表示的简易实现中,找到所有最小权边共需O(V)的运行时间。使用简单的二叉堆与邻接表来表示的话,普里姆算法的运行时间则可缩减为O(ElogV),其中E为连通图的边数,V为顶点数。

如果使用较为复杂的斐波那契堆,则可将运行时间进一步缩短为O(E+VlogV),这在连通图足够密集时(当E满足Ω(VlogV)条件时),可较显着地提高运行速度。

(2)普里木算法扩展阅读:

算法描述:

1、输入:一个加权连通图,其中顶点集合为V,边集合为E;

2、初始化:Vnew= {x},其中x为集合V中的任一节点(起始点),Enew= {},为空;

3、重复下列操作,直到Vnew= V:

在集合E中选取权值最小的边<u, v>,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);

将v加入集合Vnew中,将<u, v>边加入集合Enew中;

4、输出:使用集合Vnew和Enew来描述所得到的最小生成树。

⑶ 最小生成树 普里姆算法有问

普里姆算法构造最小生成树算法的思想是:选择一个结点,然后从这个结点开始,选择权值最小的边,用一条边连接,然后再以前面的那个结点开始,和你连接的那个结点作为根节点,再选择权值最小的边进行连接。
对权值给出解释:以上图为例,权值就是你第一个图那几条边(弧)上,所标的数字。
对楼主所提出的问题:并不是连接那圆圈中最小的圆圈,如果没错的话,那圆圈中的数字表示的是V1---V6六个顶点,并不是代表数字,以3和6为顶点,找权值最小边,显然6——4为最小,即权值为2,顶点364相连接的时候各以364为顶点寻找最小边,应该先从6连接到2,那么现在加入顶点的为3642顶点,现在以3642为顶点寻找最小边,应该从2连接到1,现在被连接的有63421,在以63421为顶点寻找最小边
出现了问题:如果以5为权值的话,无论从2连接到4还是从3连接到4都出现了环,当然我们知道数中是不能出现环的,所以寻找次小的,剩余5与13之间权值最小为13.所以将1连接5,即得到最小生成树。
楼主可以按照我说的在纸上画一下试试
从6连接到3因为有前提条件:从顶点V3开始用普里姆方法求其最小生成数,可见是从顶点3连接到6,而不是从6连接到3
希望可以解决楼主的疑惑,谢谢!

⑷ 什么是普利姆算法

Prim算法:是图的最小生成树的一种构造算法。

假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,TV 是 WN 上最小生成树中顶点的集合,TE 是最小生成树中边的集合。显然,在算法执行结束时,TV=V,而 TE 是 E 的一个子集。在算法开始执行时,TE 为空集,TV 中只有一个顶点,因此,按普里姆算法构造最小生成树的过程为:在所有“其一个顶点已经落在生成树上,而另一个顶点尚未落在生成树上”的边中取一条权值为最小的边,逐条加在生成树上,直至生成树中含有 n-1条边为止。

如果看不懂还可以找一本数据结构的书看,这个算法挺简单的。

btw:其实你有空问,应该有空网络啊~网络就有了。懒得写,我还是直接从网络过来的~

⑸ 普里姆算法是什么

在计算机科学中,普里姆(也称为Jarník's)算法是一种贪婪算法,它为加权的无向图找到一个最小生成树 。

相关简介:

这意味着它找到边的一个子集,能够形成了一个包括所有顶点的树,其中在树中所有边的权重总和最小。该算法通过从任意起始顶点开始一次给树增加一个顶点来操作,在每个步骤中添加从树到另一个顶点的花费最小的可能的连接。

该算法由捷克数学家沃伊茨奇·贾尼克于1930年开发后,后来在1957年被计算机科学家罗伯特·普里姆,以及在1959年被艾兹赫尔·戴克斯特拉重新发现和重新出版。因此,它有时也被称为Jarník算法,普里姆-jarník算法。普里姆-迪克斯特拉算法或者DJP算法。

这个问题的其他众所周知的算法包括克鲁斯卡尔算法和 Borvka's算法。这些算法在一个可能的非连通图中找到最小生成森林;相比之下,普里姆算法最基本的形式只能在连通图中找到最小生成树。然而,为图中的每个连通分量单独运行普里姆算法,也可以用于找到最小生成森林。

就渐近时间复杂度而言,这三种算法对于稀疏图来说速度相同,但比其他更复杂的算法慢。然而,对于足够密集的图,普里姆算法可以在线性时间内运行,满足或改进其他算法的时间限制。

⑹ 普里姆算法的普里姆算法的实现

为了便于在两个顶点集U和V-U之间选择权最小的边,建立了两个辅助数组closest和lowcost,它们记录从U到V-U具有最小权值的边,对于某个j∈V-U,closest[j]存储该边依附的在U中的顶点编号,lowcost[j]存储该边的权值。
为了方便,假设图G采用邻接矩阵g存储,对应的Prim(g,v)算法如下:
void Prim(MatGraph g,int v) //输出求得的最小生树的所有边
{ int lowcost[MAXVEX]; //建立数组lowcost
int closest[MAXVEX]; //建立数组closest
int min,i,j,k;
for (i=0;i<g.n;i++) //给lowcost[]和closest[]置初值
{ lowcost[i]=g.edges[v][i];
closest[i]=v;
}
for (i=1;i<g.n;i++) //构造n-1条边
{ min=INF; k=-1;
for (j=0;j<g.n;j++) //在(V-U)中找出离U最近的顶点k
if (lowcost[j]!=0 && lowcost[j]<min)
{ min=lowcost[j];
k=j; //k为最近顶点的编号
}
printf( 边(%d,%d),权值为%d ,closest[k],k,min);
lowcost[k]=0; //标记k已经加入U
for (j=0;j<g.n;j++) //修正数组lowcost和closest
if (g.edges[k][j]!=0 && g.edges[k][j]<lowcost[j])
{ lowcost[j]=g.edges[k][j];
closest[j]=k;
}
}
}
普里姆算法中有两重for循环,所以时间复杂度为O(n2),其中n为图的顶点个数。由于与e无关,所以普里姆算法特别适合于稠密图求最小生成树。

⑺ 利用普里姆算法求解最小生成树,写出步骤或画图表示过程。

<1,6>边长度未知,这里看成无穷大。
历次循环中,选择两端点分别在U,V中的边中长度最小者,
具体如下:
1. 将1加入U中,其余点加入V中。
2. 选择边<1,7>,将7加入U中,从V中除去该点。
3. 选择边<7,6>,将6加入U中,从V中除去该点。
4. 选择边<1,2>,将2加入U中,从V中除去该点。
5. 选择边<2,3>,将3加入U中,从V中除去该点。
6. 选择边<2,4>,将4加入U中,从V中除去该点。
7. 选择边<2,5>,将5加入U中,从V中除去该点。
结束。由上述六条边组成的树为求得的最小生成树。

⑻ prim算法是什么

prim算法是图论中的一种算法。

普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小。

简介

最小生成树是数据结构中图的一种重要应用,它的要求是从一个带权无向完全图中选择n-1条边并使这个图仍然连通(也即得到了一棵生成树),同时还要考虑使树的权最小。

为了得到最小生成树,人们设计了很多算法,最着名的有prim算法和kruskal算法。教材中介绍了prim算法,但是讲得不够详细,理解起来比较困难,为了帮助大家更好的理解这一算法,本文对书中的内容作了进一步的细化,希望能对大家有所帮助。

⑼ 普里姆算法和克鲁斯卡尔算法区别

普里姆算法和克鲁斯卡尔算法区别如下:
克鲁斯卡尔算法:是在剩下的所有未选取的边中,找最小边,如果和已选取的边构埋或成回路,则放弃,选晌液宴取次小边。
普里姆算法:同样是在未选取的边中寻找最小边,但是选取的原则多了宴银一条,就是该边必须和已选取的边相连,比如,如果边(1, 2)已被选取,那么接下来选取的边,必须是和顶点1,或者顶点2相连的。

⑽ 普里姆算法的相关概念

1)生成树一个连通图的生成树是它的极小连通子图,在n个顶点的情形下,有n-1条边。生成树是对连通图而言的,是连通图的极小连通子图,包含图中的所有顶点,有且仅有n-1条边。非连通图的生成树则组成一个生成森林;若图中有n个顶点,m个连通分量,则生成森林中有n-m条边。
2)和树的遍历相似,若从图中某顶点出发访遍图中每个顶点,且每个顶点仅访问一次,此过程称为图的遍历,(Traversing Graph)。图的遍历算法是求解图的连通性问题、拓扑排序和求关键路径等算法的基础。图的遍历顺序有两种:深度优先搜索(DFS)和广度优先搜索(BFS)。对每种搜索顺序,访问各顶点的顺序也不是唯一的。
3)在一个无向连通图G中,其所有顶点和遍历该图经过的所有边所构成的子图G′称做图G的生成树。一个图可以有多个生成树,从不同的顶点出发,采用不同的遍历顺序,遍历时所经过的边也就不同。
在图论中,常常将树定义为一个无回路连通图。对于一个带权的无向连通图,其每个生成树所有边上的权值之和可能不同,我们把所有边上权值之和最小的生成树称为图的最小生成树。求图的最小生成树有很多实际应用。例如,通讯线路铺设造价最优问题就是一个最小生成树问题。常见的求最小生成树的方法有两种:克鲁斯卡尔(Kruskal)算法和普里姆(Prim)算法。

阅读全文

与普里木算法相关的资料

热点内容
豌豆荚app上有什么游戏 浏览:283
公路商店app标签选什么 浏览:337
linuxoracle命令行登录 浏览:224
android深度休眠 浏览:169
php微信开发例子 浏览:843
医得app登录密码是什么 浏览:140
spring开发服务器地址 浏览:411
服务器上如何查看服务器的端口 浏览:678
单片机服务器编译 浏览:770
单口usb打印机服务器是什么 浏览:859
战地五开服务器要什么条件 浏览:956
在word中压缩图片大小 浏览:255
javatomcat图片 浏览:419
程序员生产智能创意 浏览:67
汇和银行app怎么登录 浏览:383
腾讯服务器如何上传源码 浏览:749
单片机的原理概述 浏览:512
火控pdf 浏览:270
如何复制云服务器centos环境 浏览:988
债权pdf 浏览:307