导航:首页 > 源码编译 > 迷宫最短路径算法数据结构

迷宫最短路径算法数据结构

发布时间:2023-08-20 04:46:42

A. 如何用C语言实现求迷宫的最短路径

#include<stdio.h>
#include<stdlib.h>
#define M 8
#define N 8
#define Max 100
int mg[M+2][N+2]= //定义迷宫,0表示能走的块,1表示不能走,在外围加上一圈不能走的块
{
{1,1,1,1,1,1,1,1,1,1},
{1,0,0,1,0,0,0,1,0,1},
{1,0,0,1,0,0,0,1,0,1},
{1,0,0,0,0,1,1,0,0,1},
{1,0,1,1,1,0,0,0,0,1},
{1,0,0,0,1,0,0,0,0,1},
{1,0,1,0,0,0,1,0,0,1},
{1,0,1,1,1,0,1,1,0,1},
{1,1,0,0,0,0,0,0,0,1},
{1,1,1,1,1,1,1,1,1,1}
};
struct
{
int i,j; //块的位置
int pre; //本路径中上一块在队列中的下标
}Qu[Max];
int front=-1,rear=-1;
void print(int n);
int mgpath(int xi,int yi,int xe,int ye) //搜索算法
{
int i,j,find=0,di;
rear++;
Qu[rear].i=xi;
Qu[rear].j=yi;
Qu[rear].pre=-1;
mg[1][1]=-1;
while(front<=rear&&!find)
{
front++;
i=Qu[front].i;
j=Qu[front].j;
if(i==xe&&j==ye)
{
find=1;
print(front);
return(1);
}
for(di=0;di<4;di++)
{
switch(di) //四个方向
{
case 0:i=Qu[front].i-1;j=Qu[front].j;break;
case 1:i=Qu[front].i;j=Qu[front].j+1;break;
case 2:i=Qu[front].i+1;j=Qu[front].j;break;
case 3:i=Qu[front].i;j=Qu[front].j-1;break;
}
if(mg[i][j]==0)
{
rear++;
Qu[rear].i=i;
Qu[rear].j=j;
Qu[rear].pre=front;
mg[i][j]=-1; //避免死循环
}
}
}
return 0;
}

void print(int n) //输出 路径算法
{
int k=n,j,m=1;
printf("\n");
do //将输出的路径上的所有pre改为-1
{
j=k;
k=Qu[k].pre;
Qu[j].pre=-1;
}while(k!=0);
printf("迷宫最短路径如下:\n");
k=0;
while(k<Max)
{
if(Qu[k].pre==-1)
{
printf("\t(%d,%d)",Qu[k].i,Qu[k].j);
if(m%5==0)
printf("\n");
m++;
}
k++;
}
printf("\n");
}
int main()
{
mgpath(1,1,M,N);
system("pause");
return 0;
}

B. 数据结构:求最短路径,狄杰斯彻拉算法的原理是什么最好画个图详解,谢谢!

以上图为例进行说明,图示是寻找从V1到V5的最短路径的过程。
首先,将除起点V1以外所有顶点的路径长度设为无穷大,其自身路径长度为0;
1.将起点V1加入已求解的顶点集;
2.检查新增的顶点的所有边,若另一顶点不在已求解顶点集内,则将其路径长度进行更新。新的路径长度为其原长与新增顶点自身路径长度加上边长中的较小者;
3.从所有不在已求解顶点集的顶点中,选择一个路径长度最短的顶点,加入已求解顶点集,如果这个顶点是目标顶点,则求解结束,否则跳到第2步继续求解。

图中的例子,先加了V1,然后更新V2,V3,V6的长度分别为7,9,14;
然后加最近的V2,再更新V3,V4的长度,V3经V2到达比直接从V1出发要长,所以其值没有变化,V4的长度更新为22,以后的步骤类似,不再详述。

C. 【数据结构】最短路径之迪杰斯特拉(Dijkstra)算法与弗洛伊德(Floyd)算法

迪杰斯特拉(Dijkstra)算法核心: 按照路径长度递增的次序产生最短路径。

迪杰斯特拉(Dijkstra)算法步骤:(求图中v0到v8的最短路径)并非一下子求出v0到v8的最短路径,而是 一步一步求出它们之间顶点的最短路径 ,过过程中都是 基于已经求出的最短路径的基础上,求得更远顶点的最短路径,最终得出源点与终点的最短路径

弗洛伊德(Floyd)算法是一个经典的 动态规划算法

阅读全文

与迷宫最短路径算法数据结构相关的资料

热点内容
服务器上如何查看服务器的端口 浏览:676
单片机服务器编译 浏览:768
单口usb打印机服务器是什么 浏览:859
战地五开服务器要什么条件 浏览:954
在word中压缩图片大小 浏览:253
javatomcat图片 浏览:417
程序员生产智能创意 浏览:65
汇和银行app怎么登录 浏览:381
腾讯服务器如何上传源码 浏览:745
单片机的原理概述 浏览:510
火控pdf 浏览:267
如何复制云服务器centos环境 浏览:984
债权pdf 浏览:303
红色番字的app怎么下载 浏览:876
云服务器流程教课 浏览:702
中国农业银行app怎么没有网 浏览:997
几率表算法 浏览:902
程序员理工科 浏览:708
企业邮箱登录收件服务器地址 浏览:560
计算机思维与算法设计的重要性 浏览:664