导航:首页 > 源码编译 > 明文和密文混合计算的编译器

明文和密文混合计算的编译器

发布时间:2023-08-21 04:48:09

㈠ 用C或是C++实现明文到密文的转换

给,已经在VC上编译运行确认了:
#include<conio.h>
#include<stdio.h>

#define N 20 //暂定密钥词最长为20个字符
#define M 100 //暂定输入明文最长为100个字符

void main()
{
int key[N]={NULL},keylength=0;
int beforeStr[M]={NULL},strlength=0;
int afterStr[M]={NULL};
int i,j;
char ch;

printf("请输入密钥单词: ");
while((ch=getchar())!='\n') key[keylength++]=ch-'a';

printf("请输入明文: ");
while((ch=getchar())!='\n')
{
if(ch>='a'&&ch<='z')
beforeStr[strlength++]=ch-'a';
else beforeStr[strlength++]=ch-'\0';
}

for(i=0,j=0;i<strlength;i++)
{
if(beforeStr[i]>=0&&beforeStr[i]<=25)
{
afterStr[i]=(beforeStr[i]+key[j%keylength])%26;
j++;
}
else afterStr[i]=beforeStr[i];
}

printf("加密后为: ");
for(i=0;i<strlength;i++)
{
if(afterStr[i]>=0&&afterStr[i]<=25) printf("%c",afterStr[i]+'a');
else printf("%c",afterStr[i]+'\0');
}

getch();
}

㈡ md5 算法程序+详细注释,高分求教!

MD5加密算法简介

一、综述
MD5的全称是message-digest algorithm 5(信息-摘要算法),在90年代初由mit laboratory for computer science和rsa data security inc的ronald l. rivest开发出来,经md2、md3和md4发展而来。它的作用是让大容量信息在用数字签名软件签署私人密匙前被"压缩"成一种保密的格式(就是把一 个任意长度的字节串变换成一定长的大整数)。不管是md2、md4还是md5,它们都需要获得一个随机长度的信息并产生一个128位的信息摘要。虽然这些 算法的结构或多或少有些相似,但md2的设计与md4和md5完全不同,那是因为md2是为8位机器做过设计优化的,而md4和md5却是面向32位的电 脑。这三个算法的描述和c语言源代码在internet rfcs 1321中有详细的描述(http://www.ietf.org/rfc/rfc1321.txt),这是一份最权威的文档,由ronald l. rivest在1992年8月向ieft提交。

rivest在1989年开发出md2算法。在这个算法中,首先对信 息进行数据补位,使信息的字节长度是16的倍数。然后,以一个16位的检验和追加到信息末尾。并且根据这个新产生的信息计算出散列值。后来,rogier 和chauvaud发现如果忽略了检验和将产生md2冲突。md2算法的加密后结果是唯一的--既没有重复。
为了加强算法的安全性, rivest在1990年又开发出md4算法。md4算法同样需要填补信息以确保信息的字节长度加上448后能被512整除(信息字节长度mod 512 = 448)。然后,一个以64位二进制表示的信息的最初长度被添加进来。信息被处理成512位damg?rd/merkle迭代结构的区块,而且每个区块要 通过三个不同步骤的处理。den boer和bosselaers以及其他人很快的发现了攻击md4版本中第一步和第三步的漏洞。dobbertin向大家演示了如何利用一部普通的个人电 脑在几分钟内找到md4完整版本中的冲突(这个冲突实际上是一种漏洞,它将导致对不同的内容进行加密却可能得到相同的加密后结果)。毫无疑问,md4就此 被淘汰掉了。
尽管md4算法在安全上有个这么大的漏洞,但它对在其后才被开发出来的好几种信息安全加密算法的出现却有着不可忽视的引导作用。除了md5以外,其中比较有名的还有sha-1、ripe-md以及haval等。
一年以后,即1991年,rivest开发出技术上更为趋近成熟的md5算法。它在md4的基础上增加了"安全-带子"(safety-belts)的 概念。虽然md5比md4稍微慢一些,但却更为安全。这个算法很明显的由四个和md4设计有少许不同的步骤组成。在md5算法中,信息-摘要的大小和填充 的必要条件与md4完全相同。den boer和bosselaers曾发现md5算法中的假冲突(pseudo-collisions),但除此之外就没有其他被发现的加密后结果了。
van oorschot和wiener曾经考虑过一个在散列中暴力搜寻冲突的函数(brute-force hash function),而且他们猜测一个被设计专门用来搜索md5冲突的机器(这台机器在1994年的制造成本大约是一百万美元)可以平均每24天就找到一 个冲突。但单从1991年到2001年这10年间,竟没有出现替代md5算法的md6或被叫做其他什么名字的新算法这一点,我们就可以看出这个瑕疵并没有 太多的影响md5的安全性。上面所有这些都不足以成为md5的在实际应用中的问题。并且,由于md5算法的使用不需要支付任何版权费用的,所以在一般的情 况下(非绝密应用领域。但即便是应用在绝密领域内,md5也不失为一种非常优秀的中间技术),md5怎么都应该算得上是非常安全的了。

二、算法的应用

md5的典型应用是对一段信息(message)产生信息摘要(message-digest),以防止被篡改。比如,在unix下有很多软件在下载的时候都有一个文件名相同,文件扩展名为.md5的文件,在这个文件中通常只有一行文本,大致结构如:
md5 (tanajiya.tar.gz) =
这就是tanajiya.tar.gz文件的数字签名。md5将整个文件当作一个大文本信息,通过其不可逆的字符串变换算法,产生了这个唯一的md5信 息摘要。如果在以后传播这个文件的过程中,无论文件的内容发生了任何形式的改变(包括人为修改或者下载过程中线路不稳定引起的传输错误等),只要你对这个 文件重新计算md5时就会发现信息摘要不相同,由此可以确定你得到的只是一个不正确的文件。如果再有一个第三方的认证机构,用md5还可以防止文件作者的 "抵赖",这就是所谓的数字签名应用。
md5还广泛用于加密和解密技术上。比如在unix系统中用户的密码就是以md5(或其它类似的算 法)经加密后存储在文件系统中。当用户登录的时候,系统把用户输入的密码计算成md5值,然后再去和保存在文件系统中的md5值进行比较,进而确定输入的 密码是否正确。通过这样的步骤,系统在并不知道用户密码的明码的情况下就可以确定用户登录系统的合法性。这不但可以避免用户的密码被具有系统管理员权限的 用户知道,而且还在一定程度上增加了密码被破解的难度。
正是因为这个原因,现在被黑客使用最多的一种破译密码的方法就是一种被称为"跑字 典"的方法。有两种方法得到字典,一种是日常搜集的用做密码的字符串表,另一种是用排列组合方法生成的,先用md5程序计算出这些字典项的md5值,然后 再用目标的md5值在这个字典中检索。我们假设密码的最大长度为8位字节(8 bytes),同时密码只能是字母和数字,共26+26+10=62个字符,排列组合出的字典的项数则是p(62,1)+p(62,2)….+p (62,8),那也已经是一个很天文的数字了,存储这个字典就需要tb级的磁盘阵列,而且这种方法还有一个前提,就是能获得目标账户的密码md5值的情况 下才可以。这种加密技术被广泛的应用于unix系统中,这也是为什么unix系统比一般操作系统更为坚固一个重要原因。

三、算法描述

对md5算法简要的叙述可以为:md5以512位分组来处理输入的信息,且每一分组又被划分为16个32位子分组,经过了一系列的处理后,算法的输出由四个32位分组组成,将这四个32位分组级联后将生成一个128位散列值。
在md5算法中,首先需要对信息进行填充,使其字节长度对512求余的结果等于448。因此,信息的字节长度(bits length)将被扩展至n*512+448,即n*64+56个字节(bytes),n为一个正整数。填充的方法如下,在信息的后面填充一个1和无数个 0,直到满足上面的条件时才停止用0对信息的填充。然后,在在这个结果后面附加一个以64位二进制表示的填充前信息长度。经过这两步的处理,现在的信息字 节长度=n*512+448+64=(n+1)*512,即长度恰好是512的整数倍。这样做的原因是为满足后面处理中对信息长度的要求。
md5中有四个32位被称作链接变量(chaining variable)的整数参数,他们分别为:a=0x01234567,b=0x89abcdef,c=0xfedcba98,d=0x76543210。
当设置好这四个链接变量后,就开始进入算法的四轮循环运算。循环的次数是信息中512位信息分组的数目。
将上面四个链接变量复制到另外四个变量中:a到a,b到b,c到c,d到d。
主循环有四轮(md4只有三轮),每轮循环都很相似。第一轮进行16次操作。每次操作对a、b、c和d中的其中三个作一次非线性函数运算,然后将所得结 果加上第四个变量,文本的一个子分组和一个常数。再将所得结果向右环移一个不定的数,并加上a、b、c或d中之一。最后用该结果取代a、b、c或d中之 一。
以一下是每次操作中用到的四个非线性函数(每轮一个)。

f(x,y,z) =(x&y)|((~x)&z)
g(x,y,z) =(x&z)|(y&(~z))
h(x,y,z) =x^y^z
i(x,y,z)=y^(x|(~z))
(&是与,|是或,~是非,^是异或)

这四个函数的说明:如果x、y和z的对应位是独立和均匀的,那么结果的每一位也应是独立和均匀的。
f是一个逐位运算的函数。即,如果x,那么y,否则z。函数h是逐位奇偶操作符。

假设mj表示消息的第j个子分组(从0到15),
<< ff(a,b,c,d,mj,s,ti) 表示 a=b+((a+(f(b,c,d)+mj+ti)
<< gg(a,b,c,d,mj,s,ti) 表示 a=b+((a+(g(b,c,d)+mj+ti)
<< hh(a,b,c,d,mj,s,ti) 表示 a=b+((a+(h(b,c,d)+mj+ti)
<< ii(a,b,c,d,mj,s,ti) 表示 a=b+((a+(i(b,c,d)+mj+ti)
<< 这四轮(64步)是:

第一轮

ff(a,b,c,d,m0,7,0xd76aa478)
ff(d,a,b,c,m1,12,0xe8c7b756)
ff(c,d,a,b,m2,17,0x242070db)
ff(b,c,d,a,m3,22,0xc1bdceee)
ff(a,b,c,d,m4,7,0xf57c0faf)
ff(d,a,b,c,m5,12,0x4787c62a)
ff(c,d,a,b,m6,17,0xa8304613)
ff(b,c,d,a,m7,22,0xfd469501)
ff(a,b,c,d,m8,7,0x698098d8)
ff(d,a,b,c,m9,12,0x8b44f7af)
ff(c,d,a,b,m10,17,0xffff5bb1)
ff(b,c,d,a,m11,22,0x895cd7be)
ff(a,b,c,d,m12,7,0x6b901122)
ff(d,a,b,c,m13,12,0xfd987193)
ff(c,d,a,b,m14,17,0xa679438e)
ff(b,c,d,a,m15,22,0x49b40821)

第二轮

gg(a,b,c,d,m1,5,0xf61e2562)
gg(d,a,b,c,m6,9,0xc040b340)
gg(c,d,a,b,m11,14,0x265e5a51)
gg(b,c,d,a,m0,20,0xe9b6c7aa)
gg(a,b,c,d,m5,5,0xd62f105d)
gg(d,a,b,c,m10,9,0x02441453)
gg(c,d,a,b,m15,14,0xd8a1e681)
gg(b,c,d,a,m4,20,0xe7d3fbc8)
gg(a,b,c,d,m9,5,0x21e1cde6)
gg(d,a,b,c,m14,9,0xc33707d6)
gg(c,d,a,b,m3,14,0xf4d50d87)
gg(b,c,d,a,m8,20,0x455a14ed)
gg(a,b,c,d,m13,5,0xa9e3e905)
gg(d,a,b,c,m2,9,0xfcefa3f8)
gg(c,d,a,b,m7,14,0x676f02d9)
gg(b,c,d,a,m12,20,0x8d2a4c8a)

第三轮

hh(a,b,c,d,m5,4,0xfffa3942)
hh(d,a,b,c,m8,11,0x8771f681)
hh(c,d,a,b,m11,16,0x6d9d6122)
hh(b,c,d,a,m14,23,0xfde5380c)
hh(a,b,c,d,m1,4,0xa4beea44)
hh(d,a,b,c,m4,11,0x4bdecfa9)
hh(c,d,a,b,m7,16,0xf6bb4b60)
hh(b,c,d,a,m10,23,0xbebfbc70)
hh(a,b,c,d,m13,4,0x289b7ec6)
hh(d,a,b,c,m0,11,0xeaa127fa)
hh(c,d,a,b,m3,16,0xd4ef3085)
hh(b,c,d,a,m6,23,0x04881d05)
hh(a,b,c,d,m9,4,0xd9d4d039)
hh(d,a,b,c,m12,11,0xe6db99e5)
hh(c,d,a,b,m15,16,0x1fa27cf8)
hh(b,c,d,a,m2,23,0xc4ac5665)

第四轮

ii(a,b,c,d,m0,6,0xf4292244)
ii(d,a,b,c,m7,10,0x432aff97)
ii(c,d,a,b,m14,15,0xab9423a7)
ii(b,c,d,a,m5,21,0xfc93a039)
ii(a,b,c,d,m12,6,0x655b59c3)
ii(d,a,b,c,m3,10,0x8f0ccc92)
ii(c,d,a,b,m10,15,0xffeff47d)
ii(b,c,d,a,m1,21,0x85845dd1)
ii(a,b,c,d,m8,6,0x6fa87e4f)
ii(d,a,b,c,m15,10,0xfe2ce6e0)
ii(c,d,a,b,m6,15,0xa3014314)
ii(b,c,d,a,m13,21,0x4e0811a1)
ii(a,b,c,d,m4,6,0xf7537e82)
ii(d,a,b,c,m11,10,0xbd3af235)
ii(c,d,a,b,m2,15,0x2ad7d2bb)
ii(b,c,d,a,m9,21,0xeb86d391)

常数ti可以如下选择:
在第i步中,ti是4294967296*abs(sin(i))的整数部分,i的单位是弧度。(4294967296等于2的32次方)
所有这些完成之后,将a、b、c、d分别加上a、b、c、d。然后用下一分组数据继续运行算法,最后的输出是a、b、c和d的级联。
当你按照我上面所说的方法实现md5算法以后,你可以用以下几个信息对你做出来的程序作一个简单的测试,看看程序有没有错误。

md5 ("") =
md5 ("a") =
md5 ("abc") =
md5 ("message digest") =
md5 ("abcdefghijklmnopqrstuvwxyz") =
md5 ("") =
md5 ("1234567890") =

如果你用上面的信息分别对你做的md5算法实例做测试,最后得出的结论和标准答案完全一样,那我就要在这里象你道一声祝贺了。要知道,我的程序在第一次编译成功的时候是没有得出和上面相同的结果的。

四、MD5的安全性

md5相对md4所作的改进:

1. 增加了第四轮;

2. 每一步均有唯一的加法常数;

3. 为减弱第二轮中函数g的对称性从(x&y)|(x&z)|(y&z)变为(x&z)|(y&(~z));

4. 第一步加上了上一步的结果,这将引起更快的雪崩效应;

5. 改变了第二轮和第三轮中访问消息子分组的次序,使其更不相似;

6. 近似优化了每一轮中的循环左移位移量以实现更快的雪崩效应。各轮的位移量互不相同。

㈢ 【密码学笔记】第3部分 对称密码

跟诸位大牛相比,笔者阅历尚浅、经验不足,笔记中若有错误,还需继续修正与增删。欢迎大家的批评与指正。

查看上一篇请点击以下链接: 【密码学笔记】第2部分 历史上的密码

1. XOR运算

2. 一次性密码本

3. 对称密码算法

    3.1 DES

    3.2 三重DES

    3.3 AES

    3.4 Rijndael

4. 对称密码的选择

5. 对称密码的评价

参考书目

XOR运算,又称为 异或 运算,运算结果是 同0异1 。

对同一个比特序列进行两次XOR之后就会回到最初的状态,因此XOR运算可用于对称密码的加密和解密。

一次性密码本(又称为 维纳密码 )是一种非常简单的密码,它的原理是“ 将明文与一串随机的比特序列进行XOR运算 ”。

一次性密码本是无法破译的。 这是因为在对它尝试解密的过程中,所有的排列组合都会出现,既会包含规则字符串,也会包含英文单词,还会包含乱码。由于明文中所有可能的排列组合都会出现,因此 我们无法判断其中哪一个才是正确的明文 。

一次性密码本是一种非常不实用的密码。 原因如下:

a. 密钥的配送 。( 最大的问题 )如果能够有一种方法将密钥安全地发送出去,那么就可以用同样的方法安全地发送明文。

b. 密钥的保存 。 密钥的长度必须和明文的长度相等。 如果能够有办法安全保存与明文一样长的密钥,那就有办法安全保存明文本身。

c. 密钥的重用 。在一次性密码本中绝对不能重用过去用过的随机比特序列,因为作为密钥的比特序列一旦泄露,过去所有的机密通信内容将全部被解密。

d. 密钥的同步 。在通信过程中,发送者和接收者的密钥的比特序列不允许有任何错位,否则错位的比特后的所有信息都将无法解密。

e. 密钥的生成 。一次性密码本需要生成大量的随机数,这里的随机数并不是通过计算机程序生成的伪随机数,而必须是无重现性的真正随机数。

DES是一种将64比特的明文加密成64比特的密文的对称密码算法,它的密钥长度是56比特。

DES是以64比特的明文(比特序列)为一个单位来进行加密的,这个64比特的单位称为 分组 。以分组为单位进行处理的密码算法称为 分组密码 。

DES每次只能加密64比特的数据,如果要加密的明文比较长,就需要对DES加密进行迭代,而迭代的具体方式就称为 模式(mode) 。

DES的基本结构又称为 Feistel网络 ,这一结构不仅被用于DES,在其他很多密码算法中也有应用。在Feistel网络中,加密的各个步骤称为 轮(round) ,整个加密过程就是进行若干次轮的循环。下图展现的是Feistel网络中一轮的计算流程。DES是一种16轮循环的Feistel网络。

一轮的具体计算步骤 如下:

a. 将输入的数据等分为左右两部分;

b. 将输入的右侧直接发送到输出的右侧;

c. 将输入的右侧发送到轮函数;

d. 轮函数根据右侧数据和子密钥,计算出一串看上去是随机的比特序列;

e. 将上一步得到的比特序列与左侧数据进行XOR运算,并将结果作为加密后的左侧。

我们需要用不同的子密钥对一轮的处理重复若干次,并在每两轮处理之间将左侧和右侧的数据对调。

Feistel网络的解密操作只要按照相反的顺序来使用子密钥就可以完成了。

Feistel网络的性质 :

a. 轮数可以任意增加;

b. 加密时无论使用任何函数作为轮函数都可以正确解密(即使该函数不存在反函数);

c. 加密和解密可以用完全相同的结构来实现。

综上所述,无论是任何轮数、任何轮函数,Feistel网络都可以 用相同的结构实现加密和解密 ,且加密的结果必定能够正确解密。

三重DES是为了增加DES的强度,将DES重复3次所得到的一种密码算法,也称为 TDEA ,通常缩写为 3DES 。

明文经过三次DES处理才能变成最后的密文,由于DES密钥的长度实质上是56比特,因此三重DES的密钥长度就是168比特。

三重DES并不是进行三次DES加密,而是 加密→解密→加密 的过程,目的是 让三重DES能够兼容普通的DES ,当所有密钥都相同时,三重DES也就等同于普通的DES。

尽管三重DES目前还被银行等机构使用,但其处理速度不高,除了特别重视向下兼容性的情况以外,很少被用于新的用途。

AES是取代其前任标准(DES)而成为新标准的一种对称密码算法。全世界的企业和密码学家提交了多个对称密码算法作为AES的候选,最终选出了一种名为 Rijndael 的对称密码算法,并将其确定为AES。

AES的选拔并不仅仅考虑一种算法是否存在弱点,算法的速度、实现的容易性等也都在考虑范围内。此外,这种算法还必须能够在各种平台上有效工作。

Rijndael是由比利时密码学家设计的 分组密码算法 ,被选为新一代的标准密码算法——AES。

和DES一样,Rijndael算法也是由多个 轮 构成的,其中每一轮分为 SubBytes 、 ShiftRows 、 MixColumns 和 AddRoundKey 共4个步骤。DES使用Feistel网络作为其基本结构,而Rijndael使用的是 SPN结构 。

加密过程 :

a. 首先,需要 逐个字节 地对16字节的输入数据进行SubBytes处理,即以每个字节的值(0~255)为索引,从一张拥有256个值的 替换表 (S-Box)中查找出对应值( 类似于简单替换密码 )。

b. 进行ShiftRows处理,即以4字节为单位的 行(row) 按照一定的规则向左平移,且每一行平移的字节数是不同的。

c. 进行MixColumns处理,即对一个4字节的值进行比特运算,将其变为另外一个4字节值。

d. 最后,将MixColumns的输出与轮密钥进行 XOR ,即进行AddRoundKey处理。至此,Rijndael的一轮就结束了。实际上,在Rijndael中需要重复进行10~14轮计算。

在SPN结构中, 输入的所有比特在一轮中都会被加密 。和每一轮都只加密一半输入的比特的Feistel网络相比,这种方式的优势在于 加密所需要的轮数更少 。此外,这种方式还有一个优势,即 SubBytes、ShiftRows和MixColumns可以分别以字节、行和列为单位进行并行计算 。

在Rijndael的 加密 过程中,每一轮所进行的处理为:

SubBytes→ShiftRows→MixColumns→AddRoundKey

而在 解密 时,则是按照相反的顺序来进行的,即:

AddRoundKey→InvMixColumns→InvShiftRows→InvSubBytes

解密过程 :

Rijndael算法背后有着 严谨的数学结构 ,即从明文到密文的计算过程可以全部用公式来表达,这是以前任何密码算法都不具备的性质。如果Rijndael的公式能够通过数学运算来求解,那也就意味着Rijndael能够通过数学方法进行破译,这也为新的攻击方式的产生提供了可能。

(1) 因为现在用暴力破解法已经能够在现实的时间内完成对DES的破译, DES不应再用于任何新的用途 。但是也需要保持与旧版本软件的兼容性。

(2) 尽管在一些重视兼容性的环境中会使用三重DES,但 我们也没有理由将三重DES用于新的用途 ,它会逐渐被AES所取代。

(3) 现在应该使用的算法是AES(Rijndael) ,因为它安全、快速,而且能够在各种平台上工作。

(4) AES最终候选算法应该可以作为AES的备份 ,因为这些密码算法也都经过了严格的测试,且没有发现任何弱点。

(5) 一般来说, 我们不应该使用任何自制的密码算法 ,而是应该使用AES。

优点 :

使用一种密钥空间巨大,且在算法上没有弱点的对称密码,就可以通过密文来确保明文的机密性。 巨大的密钥空间能够抵御暴力破解,算法上没有弱点可以抵御其他类型的攻击。

不足 :

a. 用对称密码进行通信时,还会出现 密钥的配送问题 ,即如何将密钥安全地发送给接受者。为了解决密钥配送问题,需要 公钥密码技术 。

b. 尽管使用对称密码可以确保机密性,但仅凭这一点还并不能完全放心。 例如发送者可能发送伪造的密文,并利用解密时返回的错误来盗取信息。

衷心感谢您的阅读。

查看下一篇请点击以下链接: 【密码学笔记】第4部分 分组密码的模式

阅读全文

与明文和密文混合计算的编译器相关的资料

热点内容
服务器上如何查看服务器的端口 浏览:676
单片机服务器编译 浏览:768
单口usb打印机服务器是什么 浏览:859
战地五开服务器要什么条件 浏览:954
在word中压缩图片大小 浏览:253
javatomcat图片 浏览:417
程序员生产智能创意 浏览:65
汇和银行app怎么登录 浏览:381
腾讯服务器如何上传源码 浏览:745
单片机的原理概述 浏览:510
火控pdf 浏览:267
如何复制云服务器centos环境 浏览:984
债权pdf 浏览:303
红色番字的app怎么下载 浏览:876
云服务器流程教课 浏览:702
中国农业银行app怎么没有网 浏览:997
几率表算法 浏览:902
程序员理工科 浏览:708
企业邮箱登录收件服务器地址 浏览:560
计算机思维与算法设计的重要性 浏览:664