① 卡尔曼滤波本质是一种滤波方式还有什么其他方法和卡尔曼滤波一样的方法
卡尔曼滤波的一个典型实例是从一组有限的,对物体位置的,包含噪声的观察序列预测出物体的坐标位置及速度. 在很多工程应用(雷达, 计算机视觉)中都可以找到它的身影. 同时,卡尔曼滤波也是控制理论以及控制系统工程中的一个重要话题.状态估计是卡尔曼滤波的重要组成部分。一般来说,根据观测数据对随机量进行定量推断就是估计问题,特别是对动态行为的状态估计,它能实现实时运行状态的估计和预测功能。比如对飞行器状态估计。状态估计对于了解和控制一个系统具有重要意义,所应用的方法属于统计学中的估计理论。最常用的是最小二乘估计,线性最小方差估计、最小方差估计、递推最小二乘估计等。其他如风险准则的贝叶斯估计、最大似然估计、随机逼近等方法也都有应用。
受噪声干扰的状态量是个随机量,不可能测得精确值,但可对它进行一系列观测,并依据一组观测值,按某种统计观点对它进行估计。使估计值尽可能准确地接近真实值,这就是最优估计。真实值与估计值之差称为估计误差。若估计值的数学期望与真实值相等,这种估计称为无偏估计。卡尔曼提出的递推最优估计理论,采用状态空间描述法,在算法采用递推形式,卡尔曼滤波能处理多维和非平稳的随机过程。
卡尔曼滤波理论的提出,克服了威纳滤波理论的局限性使其在工程上得到了广泛的应用,尤其在控制、制导、导航、通讯等现代工程方面。
② 递推估计算法的概述
递推估计算法recursive estimation algorithm
利用时刻t上的参数估计、存储向量与时刻 t+1上测量的输入和输出值u(t+1)和y(t+1)计算新参数值(t+1),再根据(t+1)计算出新参数值(t+2),直到获得满意的参数值为止。这种算法的每一步计算量都比较小,能够使用小型计算机进行离线或在线参数估计,可以估计时变参数,也可以实时估计适应控制器的参数(见适应控制系统)。20世纪60年代,递推估计算法得到迅速发展,到了70年代产生了许多不同的方法,例如,有离线方法的各种变形、卡尔曼滤波法、随机逼近方法和模型参考适应参数递推估计法等。
递推估计算法的各种方法可以用一个统一的公式来描述: