1. 现在go可以静态编译一个程序么
第一步:all.bash
% cd $GOROOT/src
% ./all.bash
第一步有些突兀,因为 all.bash 仅仅调用了其它两个 shell 脚本;make.bash 和 run.bash。如果你在使用 Windows 或 Plan 9,过程是一样的,只是脚本扩展名变成了.bat 或.rc。对于本文中的其它脚本,请根据你的系统适当改动。
第二步:make.bash
. ./make.bash --no-banner
main.bash 来源于 all.bash,因此调用退出将正确终止便宜进程。main.bash 有三个主要工作,第一个是验证编译 Go 的环境是否完整。完整性检查在过去几年中建立,它通常尝试避免使用已知的破损工具或必然失败的环境进行编译。
第三步. cmd/dist
gcc -O2 -Wall -Werror -ggdb -o cmd/dist/dist -Icmd/dist cmd/dist/*.c
一旦可用性检查完毕,make.bash 将编译产生 cmd/dist,cmd/dist取代了之前存在于Go 1 之前的Makefile 编译系统。cmd/dist用来管理少量的pkg/runtime的代码生成。cmd/dist 是C语言编写的程序,能够充分利用系统C编译器和头文件来处理大部分主机系统平台的检测。cmd/dist通常用来检测主机的操作系统和体系结构,即环境变量$GOHOSTOS和$GOHOSTARCH .如果是交叉编译的话,变量 $GOOS和$GOARCH可能会由于你的设置而不同。事实上,Go 通常用作跨平台编译器,只不过多数情况下,主机和目标系统一致而已。接下来,make.bash 调用cmd/dist 的引导参数的支持库、 lib9、 libbio 和 libmach,使用编译器套件,然后用自己的编译器进行编译。这些工具也是用 C 语言写的中,但是由系统 C 编译器编译产生。
echo "# Building compilers and Go bootstrap tool for host, $GOHOSTOS/$GOHOSTARCH."
buildall="-a"
if [ "$1" = "--no-clean" ]; then
buildall=""
fi
./cmd/dist/dist bootstrap $buildall -v # builds go_bootstrap
使用的编译器套件 cmd/dist 编译产生一个版本的gotool,go_bootstrap。但go_bootstrap并不是完整得gotool,比方说 pkg/net 就是孤立的,避免了依赖于 cgo。要编译的文件的列表以及它们的依赖项,是由cmd/dist编译的 ,所以十分谨慎地避免引入新的生成依赖项 到 cmd/go。
第四步:go_bootstrap
现在, go_bootstrap 编译完成了,make.bash 的最后一部就是使用 go_bootstrap 完成 Go 标准库的编译,包括整套 gotool 的替换版。
echo "# Building packages and commands for $GOOS/$GOARCH."
"$GOTOOLDIR"/go_bootstrap install -gcflags "$GO_GCFLAGS" \
-ldflags "$GO_LDFLAGS" -v std
第五步:run.bash
现在,make.bash 完成了,运行回到了 all.bash,它将引用 run.bash。run.bash 的工作是编译和测试标准库,运行时以及语言测试套件。
bash run.bash --no-rebuild
使用 --no-rebuild 标识是因为 make.bash 和 run.bash 可能都调用了 go install -a std,这样可以避免重复,--no-rebuild 跳过了第二个 go install。
# allow all.bash to avoid double-build of everything
rebuild=true
if [ "$1" = "--no-rebuild" ]; then
shift
else
echo '# Building packages and commands.'
time go install -a -v std
echo
fi
第六步:go test -a std
echo '# Testing packages.'
time go test std -short -timeout=$(expr 120 \* $timeout_scale)s
echo
下一步 run.bash z则是对标准库中的所有包进行单元测试,这是使用 testing 包编写的。由于 $GOPATH 和 $GOROOT 中的代码存在于同一个命名空间中,我们不能使用 go test,这可能会测试 $GOPATH 中的所有包,所以将创建别名std来标识标准库中的包。由于有些测试需要很长时间,或耗用大量内存,测试将会通过 -short 标识将其过滤。
第七步 runtime 和 cgo 测试
run.bash的下一节将运行大量对cgo支持的平台测试,运行一些季春测试,编译 Go 附带的一些杂项程序。随着时间的推移,这份杂项程序列表已经变长了,当它们发现自己并不包含在编译过程中时,沉默将不可避免的被打破。
第八步: go run test
(xcd ../test
unset GOMAXPROCS
time go run run.go
) || exit $?
run.bash的倒数第二步调用了$GOROOT目录下test文件夹中的编译器和运行时测试。这其中有描述编译器和运行时本身的低层级测试。而子目录 test/bugs 及 test/fixedbugs 中的测试对已知问题和已解决问题进行特别的测试。所有测试的测试驱动器是 $GOROOT/test/run.go,该程序很小,它调用test文件夹中的每个.go 文件。有些 .go 文件在首行上描述了预期的运行结果,例如,程序失败或是放出特定的输出队列。
第九步go tool api
echo '# Checking API compatibility.'
go tool api -c $GOROOT/api/go1.txt,$GOROOT/api/go1.1.txt \
-next $GOROOT/api/next.txt -except $GOROOT/api/except.txt
run.bash的最后一部将调用API工具,API工具的作用是执行 Go 1 约定;导出的符号,常数,函数,变量,类型和方法组成2012年确认的 Go 1 API。Go 1 写在 api/go1.txt 文件,而 Go 1.1 则写在 api/go1.1.txt文件中。另一个额外的文件,api/next.txt 描述了G 1.1自后添加到标准库和运行时中的符号。当 Go 1.2 发布时,这个文件将会成为 Go 1.2 的约定,另一个新的 next.txt 文件也将被创建。这里还有一个小文件,except.txt,它包括 Go 1 约定中被批准的扩展。对文件的增添总是小心翼翼的。
2. 如何编译armlinux的go
Golang也就是Go语言,现在已经发行到1.4.1版本了,语言特性优越性和背后Google强大靠山什么的就不多说了。Golang的官方提供了多个平台上的二进制安装包,遗憾的是并非没有发布ARM平台的二进制安装包。ARM平台没办法直接从官网下载二进制安装包来安装,好在Golang是支持多平台并且开源的语言,因此可以通过直接在ARM平台上编译源代码来安装。整个过程主要包括编译工具配置、获取Golang源代码、设置Golang编译环境变量、编译、配置Golang行环境变量等步骤。
注:本文选用树莓派做测试,因为树莓派是基于ARM平台的。
1、编译工具配置
据说下个版本的golang编译工具要使用golang自己来写,但目前还是使用C编译工具的。因此,首先要配置好C编译工具:
1.1在Ubuntu或Debian平台上可以使用sudoapt-getinstallgcclibc6-dev命令安装,树莓派的RaspBian系统是基于Debian修改的,所以可以使用这种方法安装。
1.2在RedHat或CentOS6平台上可以使用sudoyuminstallgcclibc-devel命令安装。
安装完成后可以输入gcc--version命令验证是否成功安装。
2、获取golang源代码
2.1直接从官网下载源代码压缩包。
golang官网提供golang的源代码压缩包,可以直接下载,最新的1.4.1版本源代码链接:/golang/go1.4.1.src.tar.gz
2.2使用git工具获取。
golang使用git版本管理工具,也可以使用git获取golang源代码。推荐使用这个方法,因为以后可以随时获取最新的golang源代码。
2.2.1首先确认ARM平台上已经安装了git工具,可以使用git--version命令确认。一般linux平台都安装了git,没有的话可以自行安装,不同平台的安装方法可以参考:download/linux
2.2.2克隆远程golang的git仓库到本地
在终端cd到你想要安装golang的目录,确保该目录下没有名为go的目录。然后以下命令获取代码仓库:
gitclone/go
大陆地区可能会获取失败,在不翻墙的情况下我试了几次都没成功,原因大家都懂的。好在google已经将golang也托管到github上面,所以也可以通过下面命令获取:
gitclone/golang/go.git
视网络情况,下载可能需要不少时间。我2M的带宽花了将近两个小时才下载完,虽然整个项目不过几十兆==
下载完成后,可以看到目录下多了一个go目录,里面即为golang的源代码,在终端上执行cdgo命令进入该目录。
执行下面命令检出go1.4.1版本的源代码,因为现在汪敏指已经有新的代码提交上去了,最新的代码可能不是最稳定的:
gitcheckoutgo1.4.1
至此,最新1.4.1发行版的源代码获取完毕
3、设置golang的编译环境变量
主要有GOROOT、GOOS、GOARCH、GOARM四个环境变量需要设置,先解释四个环境变量的意义。
3.1GOROOT
主要代表golang树结构目录的路径,也就是上面git检出的go目录。一般可以不用设置这个环境变量,因为编译的时候默认会以go目录下src子目录中的all.bash脚本困配运行时的父目录作为GOROOT的值。为了保险起见,可以直接设拿芹置为go目录的路径。
3.2GOOS和GOARCH
分别代表编译的目标系统和平台,可选值如下:
GOOSGOARCH
darwin386
darwinamd64
dragonfly386
dragonflyamd64
freebsd386
freebsdamd64
freebsdarm
linux386
linuxamd64
linuxarm
netbsd386
netbsdamd64
netbsdarm
openbsd386
openbsdamd64
plan9386
plan9amd64
solarisamd64
windows386
windowsamd64
需要注意的是这两个值代表的是目标系统和平台,而不是编译源代码的系统和平台。树莓派的RaspBian是linux系统,所以这些GOOS设置为linux,GOARCH设置为arm。
3.3GOARM
表示使用的浮点运算协处理器版本号,只对arm平台有用,可选值有5,6,7。如果是在目标平台上编译源代码,这个值可以不设置,它会自动判断需要使用哪一个版本。
总结下来,在树莓派上设置golang的编译环境变量,可编辑$HOME/.bashrc文件,在末尾添加下面内容:
exportGOROOT=你的go目录路径
exportGOOS=linux
exportGOARCH=arm
编辑完后保存,执行source~/.bashrc命令让修改生效。
4、编译源代码
环境变量配置完成自后就可以开始编译源代码。在go目录下的src子目录中,主要有all.bash和make.bash两个脚本(另外还有两个all.bat和make.bat脚本适用于window平台)。编译实际上就是执行其中一个脚本,两者的区别在于all.bash在编译完成后还会执行一些测试套件。如果希望只编译不测试,可以运行make.bash脚本。使用cd命令进入go下src目录,执行./all.bash或者./make.bash命令即可开始编译。由于硬件情况不同,编译耗费的时间不同。在我的B型树莓派编译过程花费了将近半个小时,编译完成后执行的测试套件又花费了差不多一个小时,总共花费了一个半小时左右。
5、配置golang运行环境变量
编译完成后,go目录下会生成bin目录,里面就是go的运行脚本。为了以后使用方法,可以将这个bin路径添加到PATH环境变量中。同样编辑~/.bashrc文件,因为前面设置过GOROOT环境变量指向go目录了,所以只需要在末尾加上
exportPATH=$PATH:$GOROOT/bin
保存后同样执行source~/.bashrc命令让环境变量生效。
至此,golang源代码编译安装成功。执行goversion应该就能看到当前golang的版本信息,表示编译安装成功。
3. Go语言编译器TinyGo,基于LLVM,在微控制器和小系统上编译和运行
TinyGo是一个为微控制器、WebAssembly(Wasm)和命令行工具等小型场景设计的Go语言编译器。TinyGo重用了Go语言工具和LLVM使用的库,以编译用Go语言编写的程序。目前,该项目在GitHub上已经积累了10.1k的Star。
如下为一个示例程序,当运行在任何支持的带板载LED的主板上时,则会点亮内置LED。
上述程序可以在单片机、Adafruit ItsyBitsy M0微控制器或任何支持的带内置LED的板上进行编译和不需要修改的运行,只要设置正确的TinyGo编译器目标即可。例如,设置如下目标可以编译和点亮 单片机。
项目概述
TinyGo项目旨在将Go语言引入到具有单进程或核心的微控制器和小系统。TinyGo类似于emgo,但主要的区别在于作者想要保留Go内存模型。另一个区别在于TinyGo在内部使用LLVM,因而可以获得更小更高效的代码以及更高的灵活性。
创建TinyGo项目的初衷是,如果Python可以在微控制器上运行,Go语言当然也应该能够在更低级微设备上运行。
支持设备
你可以为微控制器、WebAssembly和Linux编译TinyGo程序。目前,TinyGo支持以下85种微处理器板。
更多技术细节请参阅原项目。
4. golang进行交叉编译
golang进行交叉编译
交叉编译即编译不同操作系统平台的可执激链前行程序
golang执行交叉编译,只需要使用两个变量
- GOOS:目标操作系统 - GOARCH:目标操作系统的架构
根据下面这个表格指定就行了。
其中386指的是32位系统
build命令的用法如下
usage: go build [-o output] [-i] [build flags] [packages]
-o指定文件名,中间可以加一些flag
如果是在linux下面编译win 64位程序,执行明清类似下面的唤扒命令即可。
GOOS=windows GOARCH=amd64 go build test.go -o t.exe
5. Go语言编译成aar并调试
go及gomobile的环境配置这里就不介绍了,直接说aar的生成和使用。
1. 设置环境变量GOPATH
GOPATH的值可以有多个,用半角分号间隔,但不能以其结束,设置完成后需要重新做 gomobile init 。
2. 在GOPATH里创建src文件夹,用于存放go的包和源文件
3. 在src中创建hello文件夹(go文件的包名)
4. 在hello中创建hello.go文件,并输入内容
5. 编译
执行命令: gomobile bind -target=android hello
会生成一个hello.aar文件
6. 导入到android工程
将hello.aar文件放入工程的libs中,并配置build.gradle
在根结点加入:
在dependencies结点下加入依赖:
7. 在Java中测试
运行后,结果会输出 Hello, Android and Gopher
6. linux环境下golang怎么编译exe
Linux 是不需要安装的,直接用 chmod -x 文件名 将它的属性修改为可运行,然后就可以通过命令行执行它了,后缀名你改为 .sh ,这是 shell 默认支持的文件类型
7. golang 如何创建,编译,打包go语言的源代码和工程
1.最简单的方法:
public static String reverse1(String str)
{ return new StringBuffer(str).reverse().toString();
}
2.最常用的方法:
public static String reverse3(String s)
{ char[] array = s.toCharArray();
String reverse = ""; //注意这是空串,不是null
for (int i = array.length - 1; i >= 0; i--)
reverse += array[i];
return reverse;
}
3.常用方法的变形:
public static String reverse2(String s)
{ int length = s.length();
String reverse = ""; //注意这是空串,不是null
for (int i = 0; i < length; i++)
reverse = s.charAt(i) + reverse;//在字符串前面连接, 而非常见的后面
return reverse;
}
8. golang项目中使用条件编译
golang中没有类似C语言中条件编译的写法,比如在C代码中可以使用如下语法做一些条件编译,结合宏定义来使用可以实现诸如按需编译release和debug版本代码的需求
build tags 是通过代码注释的形式实现的,要写在文件的最顶端;
go build指令在编译项目的时候会检查每一个文件的build tags,用来决定是编译还是跳过该文件
build tags遵循以下规则
示例:
约束此文件只能在支持kqueue的BSD系统上编译
一个文件可能包含多行条件编译注释,比如:
约束该文件在linux/386 或 darwin/386平台编译
需要注意的点
正确的写法如下:
编译方法:
具有_$GOOS.go后缀的go文件在编译的时候会根据当前平台来判断是否将该文件导入并编译;同样适用于处理器架构判断 _$GOARCH.go。
两者可以结合起来使用,形式为: _$GOOS_$GOARCH.go
示例:
文件名必须提供,如果只由后缀的文件名会被编译器忽略,比如:
这两个文件会被编译器忽略,因为以下划线开头的文件都会被忽略