‘壹’ 向量的点乘与叉乘的运算公式
向量的叉乘运算法则为|向量c|=|向量a×向量b|=|a||b|sin<a,b>。
向量的外积不遵守乘法交换率,因为向量a×向量b=-向量b×向量a。向量积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。
向量介绍
在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的只有大小,没有方向的量叫做数量(物理学中称标量)。
向量的记法:印刷体记作粗体的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如Oxy平面中(2,3)是一向量。
‘贰’ 叉乘点乘混合运算公式
叉乘点乘混合运算公式(a,b,c)=(b,c,a)=(c,a,b)=-(a,c,b)=-(c,b,a)=-(b,a,c)。点乘是向量的内积,叉乘是向量的外积。点乘也叫数量积。结果是一个向量在另一个向量方向上投影的长度,是一个标量。叉乘也叫向量积。结果是一个和已有两个向量都垂直的向量。点乘反映着两个向量的“相似度”,两个向量越“相似”,它们的点乘越大。
‘叁’ 点乘和叉乘运算法则是什么
点乘,也叫向量的内积、数量积。运算法则为向量a·向量b=|a||b|cos<a,b>叉乘,也叫向量的外积、向量积。运算法则为|向量c|=|向量a×向量b|=|a||b|sin<a,b>。
运算法则
点乘
点乘,也叫向量的内积、数量积。顾名思义,求下来的结果是一个数。
向量a·向量b=|a||b|cos<a,b>
在物理学中,已知力与位移求功,实际上就是求向量F与向量s的内积,即要用点乘。
叉乘
叉乘,也叫向量的外积、向量积。顾名思义,求下来的结果是一个向量,记这个向量为c。
|向量c|=|向量a×向量b|=|a||b|sin<a,b>。
向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向)。
因此向量的外积不遵守乘法交换率,因为向量a×向量b=-向量b×向量a在物理学中,已知力与力臂求力矩,就是向量的外积,即叉乘。