导航:首页 > 源码编译 > 简单查找算法

简单查找算法

发布时间:2023-08-25 10:10:46

❶ 怎样才能快速搜索路由表有哪些着名的搜索算法

有三个路由器,a,b和c。路由器a的两个网络接口f0和s0
分别连接在
10.1.0.0和10.2.0.0网段上;路由器b的两个网络接口s0和s1
分别连接在
10.2.0.0和10.3.0.0网段上;路由器c的两个网络接口s0和e0
分别连接在
10.3.0.0和10.4.0.0网段上;
如上图中各路由表的前两行所示,通过路由表的网络接口到与之直接相连的网
络的网络连接,其向量距离设置为0。这即是最初的路由表。
当路由器b和a以及b和c之间相互交换路由信息后,它们会更新各自的路由表。
例如,路由器b通过网络端口s1收到路由器c的路由信息(10.3.0.0,s0,0)和(10.4.0.0,e0,0)后,在自己的路由表中增加一条(10.4.0.0,s1,1)路由信息。该信息表示:通过路由器b的网络接
口s1可以访问到10.4.0.0网段,其向量距离为1,该向量距离是在路由器c的基础上加1获得的。
同样道理,路由器b还会产生一条(10.1.0.0,s0,1)路由,这条路由是通过网络端口s0从路由器a
获得的。如此反复,直到最终收敛,形成图中所示的路由表。
概括地说,距离向量算法要求每一个路由器把它的整个路由表发送给与它直接连接的其它路由
器。路由表中的每一条记录都包括目标逻辑地址、相应的网络接口和该条路由的向量距离。当一个路
由器从它的相邻处收到更新信息时,它会将更新信息与本身的路由表相比较。如果该路由器比较出一条
新路由或是找到一条比当前路由更好的路由时,它会对路由表进行更新:将从该路由器到邻居之间的
向量距离与更新信息中的向量距离相加作为新路由的向量距离。

❷ 二分查找法的具体算法

折半查找法也称为二分查找法,它充分利用了元素间的次序关系,采用分治策略,可在最坏的情况下用O(log n)完成搜索任务。它的基本思想是,将n个元素分成个数大致相同的两半,取a[n/2]与欲查找的x作比较,如果x=a[n/2]则找到x,算法终止。如果x<a[n/2],则我们只要在数组a的左半部继续搜索x(这里假设数组元素呈升序排列)。如果x>a[n/2],则我们只要在数组a的右半部继续搜索x。二分搜索法的应用极其广泛,而且它的思想易于理解,但是要写一个正确的二分搜索算法也不是一件简单的事。第一个二分搜索算法早在1946年就出现了,但是第一个完全正确的二分搜索算法直到1962年才出现。Bentley在他的着作《Writing Correct Programs》中写道,90%的计算机专家不能在2小时内写出完全正确的二分搜索算法。问题的关键在于准确地制定各次查找范围的边界以及终止条件的确定,正确地归纳奇偶数的各种情况,其实整理后可以发现它的具体算法是很直观的,我们可用C++描述如下:

template<class Type>

int BinarySearch(Type a[],const Type& x,int n)

{

int left=0;

int right=n-1;

while(left<=right){

int middle=(left+right)/2;

if (x==a[middle]) return middle;

if (x>a[middle]) left=middle+1;

else right=middle-1;

}

return -1;

}

模板函数BinarySearch在a[0]<=a[1]<=...<=a[n-1]共n个升序排列的元素中搜索x,找到x时返回其在数组中的位置,否则返回-1。容易看出,每执行一次while循环,待搜索数组的大小减少一半,因此整个算法在最坏情况下的时间复杂度为O(log n)。在数据量很大的时候,它的线性查找在时间复杂度上的优劣一目了然。

❸ 计算机考研:数据结构常用算法解析(8)

第九章 查找
查找分成静态查找和动态查找,静态查找只是找,返回查找位置。而动态查找则不同,若查找成功,返回位置,若查找不成功,则要返回新记录的插入位置。也就是说,静态查找不改变查找表,而动态查找则会有插入操作,会改变查找表的。
不同的查找所采用的存储结构也不同,静态查找采用顺序表,而动码迟态查找由于经常变动,所以用二叉排序树,二叉平衡树、B-和B+。
静态查找有,顺序查找,折半查找,分块查找(索引顺序查找)
顺序查找(Sequential Search)是最简单的一种查找方法。
算法思路
设给定值为k,在表(R1 R2……Rn)中,从Rn即最后一个元素开始,查找key=k的记录。若存在一个记录Ri(l≤i≤n)的key为k,则查找成功,返回记录序号i;否则,查找失败,返回0。
算法描述
int sqsearch(sqlist r,keytype k) //对表r顺序查找的算法//
{ int i;
r.data[0].key=k; //k存入监视哨//
i=r.len; //取表长//
while(r.data[i].key!=k)
i--; //顺序查找//
return(i);
}
算法用了一点技巧:先将k存入监视哨,若对某个i(≠0)有r.data[i].key=k,则查找成功,返回i;若i从n递减到1都无记录的key为k,i再减1为0时,必有r.data[0].key=k,说明查找失败,返回i=0。
平均查找成功长度ASL= ,而查找失败时,查找次数等于n+l。
折半查找算法及分析
当记录的key按关系≤或≥有序时,不管是递增的还是递减的,只要有序且采用顺序存储。
算法描述
int Binsearch(sqlist r,keytype k) //对有序表r折半查找的算法//
{ int low,high,mid;
low=1;high=r.len; //上下界初值//
while(low<=high) //表空间存在时//
{ mid=(low+high)/2; //求当前mid//
if (k==r.data[mid].key)
return(mid); //查找成功,返回mid//
if (k
high=mid-1; //调整上界,向左部查找//
else
low=mid+1; //调整下界,向右部查找//
}
return(0); //low>high,查找失败//
}
判定树:用来描述二分查找过程的二叉树。n个结点的判定树的深度和n个结点的完全二叉树深度相同= 。但判断树不一定是完全二叉树,但他的叶子结点所在层次之差不超过1。所以,折半查找在查找成功时和给定值进行比笑困较的关键字个数至多为
ASL=
分块查找算法及分析
分块查找(Blocking Search),又称索引顺序查找(Indexed Sequential Search),是顺序查找方法的一种改进,目的也是为了提高查找效率。
1.分块
设记录表长为n,将表的n个记录分成b= 个块,每块s个记录(最后一块记录数可以少于s个),即:
且表分块有序,即第i(1≤i≤b-1)块所有记录的key小于第i+1块中记录的key,但块内记录可以无序。
2.建立索引
每块对应一索引项:
KeymaxLink
其中Keymax为该块内记录的最大key;link为该块第一记录的序号(或指针)。
3.算法思路 分块索碰模念引查找分两步进行:
(1)由索引表确定待查找记录所在的块;(可以折半查找也可顺序因为索引表有序)
(2)在块内顺序查找。(只能用顺序查找,块内是无序的)

考研有疑问、不知道如何总结考研考点内容、不清楚考研报名当地政策,点击底部咨询官网,免费领取复习资料:https://www.87dh.com/xl/

程序员开发用到的十大基本算法

算法一:快速排序算法
快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。

快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。

算法步骤:
1 从数列中挑出一个元素,称为 “基准”(pivot),
2 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
3 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

算法二:堆排序算法
堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序的平均时间复杂度为Ο(nlogn) 。

算法步骤:
1.创建一个堆H[0..n-1]
2.把堆首(最大值)和堆尾互换
3.把堆的尺寸缩小1,并调用shift_down(0),目的是把新的数组顶端数据调整到相应位置
4.重复步骤2,直到堆的尺寸为1

算法三:归并排序
归并排序(Merge sort,台湾译作:合并排序)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

算法步骤:

算法四:二分查找算法
二分查找算法是一种在有序数组中查找某一特定元素的搜索算法。搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜 素过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组 为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。折半搜索每次把搜索区域减少一半,时间复杂度为Ο(logn) 。

算法五:BFPRT(线性查找算法)
BFPRT算法解决的问题十分经典,即从某n个元素的序列中选出第k大(第k小)的元素,通过巧妙的分 析,BFPRT可以保证在最坏情况下仍为线性时间复杂度。该算法的思想与快速排序思想相似,当然,为使得算法在最坏情况下,依然能达到o(n)的时间复杂 度,五位算法作者做了精妙的处理。

算法步骤:

终止条件:n=1时,返回的即是i小元素。

算法六:DFS(深度优先搜索)
深度优先搜索算法(Depth-First-Search),是搜索算法的一种。它沿着树的深度遍历树的节点,尽可能深的搜索树的分 支。当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发 现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。DFS属于盲目搜索。

深度优先搜索是图论中的经典算法,利用深度优先搜索算法可以产生目标图的相应拓扑排序表,利用拓扑排序表可以方便的解决很多相关的图论问题,如最大路径问题等等。一般用堆数据结构来辅助实现DFS算法。

算法步骤:

上述描述可能比较抽象,举个实例:
DFS 在访问图中某一起始顶点 v 后,由 v 出发,访问它的任一邻接顶点 w1;再从 w1 出发,访问与 w1邻 接但还没有访问过的顶点 w2;然后再从 w2 出发,进行类似的访问,… 如此进行下去,直至到达所有的邻接顶点都被访问过的顶点 u 为止。

接着,退回一步,退到前一次刚访问过的顶点,看是否还有其它没有被访问的邻接顶点。如果有,则访问此顶点,之后再从此顶点出发,进行与前述类似的访问;如果没有,就再退回一步进行搜索。重复上述过程,直到连通图中所有顶点都被访问过为止。

算法七:BFS(广度优先搜索)
广度优先搜索算法(Breadth-First-Search),是一种图形搜索算法。简单的说,BFS是从根节点开始,沿着树(图)的宽度遍历树(图)的节点。如果所有节点均被访问,则算法中止。BFS同样属于盲目搜索。一般用队列数据结构来辅助实现BFS算法。

算法步骤:

算法八:Dijkstra算法
戴克斯特拉算法(Dijkstra’s algorithm)是由荷兰计算机科学家艾兹赫尔·戴克斯特拉提出。迪科斯彻算法使用了广度优先搜索解决非负权有向图的单源最短路径问题,算法最终得到一个最短路径树。该算法常用于路由算法或者作为其他图算法的一个子模块。

该算法的输入包含了一个有权重的有向图 G,以及G中的一个来源顶点 S。我们以 V 表示 G 中所有顶点的集合。每一个图中的边,都是两个顶点所形成的有序元素对。(u, v) 表示从顶点 u 到 v 有路径相连。我们以 E 表示G中所有边的集合,而边的权重则由权重函数 w: E → [0, ∞] 定义。因此,w(u, v) 就是从顶点 u 到顶点 v 的非负权重(weight)。边的权重可以想象成两个顶点之间的距离。任两点间路径的权重,就是该路径上所有边的权重总和。已知有 V 中有顶点 s 及 t,Dijkstra 算法可以找到 s 到 t的最低权重路径(例如,最短路径)。这个算法也可以在一个图中,找到从一个顶点 s 到任何其他顶点的最短路径。对于不含负权的有向图,Dijkstra算法是目前已知的最快的单源最短路径算法。

算法步骤:

重复上述步骤2、3,直到S中包含所有顶点,即W=Vi为止

算法九:动态规划算法
动态规划(Dynamic programming)是一种在数学、计算机科学和经济学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。 动态规划常常适用于有重叠子问题和最优子结构性质的问题,动态规划方法所耗时间往往远少于朴素解法。

动态规划背后的基本思想非常简单。大致上,若要解一个给定问题,我们需要解其不同部分(即子问题),再合并子问题的解以得出原问题的解。 通常许多 子问题非常相似,为此动态规划法试图仅仅解决每个子问题一次,从而减少计算量: 一旦某个给定子问题的解已经算出,则将其记忆化存储,以便下次需要同一个 子问题解之时直接查表。 这种做法在重复子问题的数目关于输入的规模呈指数增长时特别有用。

关于动态规划最经典的问题当属背包问题。

算法步骤:

算法十:朴素贝叶斯分类算法
朴素贝叶斯分类算法是一种基于贝叶斯定理的简单概率分类算法。贝叶斯分类的基础是概率推理,就是在各种条件的存在不确定,仅知其出现概率的情况下, 如何完成推理和决策任务。概率推理是与确定性推理相对应的。而朴素贝叶斯分类器是基于独立假设的,即假设样本每个特征与其他特征都不相关。

朴素贝叶斯分类器依靠精确的自然概率模型,在有监督学习的样本集中能获取得非常好的分类效果。在许多实际应用中,朴素贝叶斯模型参数估计使用最大似然估计方法,换言之朴素贝叶斯模型能工作并没有用到贝叶斯概率或者任何贝叶斯模型。

尽管是带着这些朴素思想和过于简单化的假设,但朴素贝叶斯分类器在很多复杂的现实情形中仍能够取得相当好的效果。

阅读全文

与简单查找算法相关的资料

热点内容
安卓软件没网怎么回事 浏览:785
dvd压缩碟怎么导出电脑 浏览:274
冒险岛什么服务器好玩 浏览:541
如何在服务器上做性能测试 浏览:793
命令序列错 浏览:259
javaif的条件表达式 浏览:576
手机app上传的照片怎么找 浏览:531
云服务器面临哪些威胁 浏览:748
c语言各种编译特点 浏览:177
路由器多种加密方法 浏览:604
程序员阻止电脑自动弹出定位 浏览:168
如何做服务器服务商 浏览:761
su剖切命令 浏览:726
devc编译背景 浏览:211
学习单片机的意义 浏览:51
音频算法AEC 浏览:911
加密货币容易被盗 浏览:82
苹果平板如何开启隐私单个app 浏览:704
空调压缩机一开就停止 浏览:529
如何下载虎牙app 浏览:849