㈠ 优化算法总结
本文介绍一下机器学习和深度学习中常用的优化算法和优化器以及一些其他我知道的优化算法,部分算法我也没有搞懂,就先记录下来以后慢慢研究吧.*_*.
1.梯度下降算法(Gradient Descent)
梯度下降法可以参考我另一篇文章 机器学习-线性回归 里的讲解,这里就不在重复叙述.这里需要强调一下,深度学习里常用的SGD,翻译过来是随机梯度下降,但是实质是mini-batch梯度下降(mini-batch-gd),或者说是两者的结合更准确一些.
SGD的优点是,算法简单,计算量小,在函数为凸函数时可以找到全局最优解.所以是最常用的优化算法.缺点是如果函数不是凸函数的话,很容易进入到局部最优解而无法跳出来.同时SGD在选择学习率上也是比较困难的.
2.牛顿法
牛顿法和拟牛顿法都是求解无约束最优化问题的常用方法,其中牛顿法是迭代算法,每一步需要求解目标函数的海森矩阵的逆矩阵,计算比较复杂.
牛顿法在求解方程根的思想:在二维情况下,迭代的寻找某一点x,寻找方法是随机一个初始点x_0,目标函数在该点x_0的切线与x坐标轴的交点就是下一个x点,也就是x_1.不断迭代寻找x.其中切线的斜率为目标函数在点x_0的导数(梯度),切必过点(x_0,f(x_0)).所以迭代的方程式如图1,为了求该方程的极值点,还需要令其导数等于0,也就是又求了一次导数,所以需要用到f(x)的二阶导数.
在最优化的问题中,牛顿法提供了一种求解的办法. 假设任务是优化一个目标函数f, 求函数ff的极大极小问题, 可以转化为求解函数f导数等于0的问题, 这样求可以把优化问题看成方程求解问题(f的导数等于0). 剩下的问题就和牛顿法求解方程根的思想很相似了.
目标函数的泰勒展开式:
化简后:
这样就得到了与图1相似的公式,这里是二维的,在多维空间上,求二阶导数就是求海森矩阵,因为是分母,所以还需要求海森矩阵的逆矩阵.
牛顿法和SGD的区别:
牛顿法是二阶求导,SGD是一阶求导,所以牛顿法要收敛的更快一些.SGD只考虑当前情况下梯度下降最快的方向,而牛顿法不仅考虑当前梯度下降最快,还有考虑下一步下降最快的方向.
牛顿法的优点是二阶求导下降速度快,但是因为是迭代算法,每一步都需要求解海森矩阵的逆矩阵,所以计算复杂.
3.拟牛顿法(没搞懂,待定)
考虑到牛顿法计算海森矩阵比较麻烦,所以它使用正定矩阵来代替海森矩阵的逆矩阵,从而简化了计算过程.
常用的拟牛顿法有DFP算法和BFGS算法.
4.共轭梯度法(Conjugate Gradient)
共轭梯度法是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法计算海森矩阵并求逆的缺点.共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一.
5.拉格朗日法
参考SVM里的讲解 机器学习-SVM
6.动量优化法(Momentum)
动量优化法主要是在SGD的基础上,加入了历史的梯度更新信息或者说是加入了速度更新.SGD虽然是很流行的优化算法,但是其学习过程很慢,因为总是以同样的步长沿着梯度下降的方向.所以动量是为了加速学习的方法.
其中第一行的减号部分是计算当前的梯度,第一行是根据梯度更新速度v,而α是新引进的参数,在实践中,α的一般取值为 0.5,0.9 和 0.99.和学习率 一样,α 也会随着时间不断调整.一般初始值是一个较小的值,随后会慢慢变大.
7.Nesterov加速梯度(NAG, Nesterov accelerated gradient)
NAG是在动量优化算法的基础上又进行了改进.根据下图可以看出,Nesterov 动量和标准动量之间的区别体现在梯度计算上, Nesterov 动量中,梯度计算在施加当前速度之后.因此,Nesterov 动量可以解释为往标准动量方法中添加了一个校正因子
8.AdaGrad算法
AdaGrad算法,自适应优化算法的一种,独立地适应所有模型参数的学习率,缩放每个参数反比于其所有梯度历史平均值总和的平方根.具有代价函数最大梯度的参数相应地有个快速下降的学习率,而具有小梯度的参数在学习率上有相对较小的下降.通俗一点的讲,就是根据实际情况更改学习率,比如模型快要收敛的时候,学习率步长就会小一点,防止跳出最优解.
其中g是梯度,第一行的分母是计算累计梯度的平方根, 是为了防止分母为0加上的极小常数项,α是学习率.
Adagrad的主要优点是不需要人为的调节学习率,它可以自动调节.但是依然需要设置一个初始的全局学习率.缺点是随着迭代次数增多,学习率会越来越小,最终会趋近于0.
9.RMSProp算法
RMSProp修改 AdaGrad 以在非凸设定下效果更好,改变梯度积累为指数加权的移动平均.AdaGrad旨在应用于凸问题时快速收敛.
10.AdaDelta算法
11.Adam算法
Adam是Momentum和RMSprop的结合体,也就是带动量的自适应优化算法.
12.Nadam算法
13.模拟退火算法
14.蚁群算法
15.遗传算法
动量是为了加快学习速度,而自适应是为了加快收敛速度,注意学习速度快不一定收敛速度就快,比如步长大学习速度快,但是很容易跳出极值点,在极值点附近波动,很难达到收敛.
未完待定....
参考:
《统计学习方法》 李航 着
《深度学习》 花书
㈡ 几种常用最优化方法
学习和工作中遇到的大多问题都可以建模成一种最优化模型进行求解,比如我们现在学习的机器学习算法,大部分的机器学习算法的本质都是建立优化模型,通过最优化方法对目标函数(或损失函数)进行优化,从而训练出最好的模型。常见的优化方法(optimization)有梯度下降法、牛顿法和拟牛顿法、共轭梯度法等等。
1. 梯度下降法(Gradient Descent)
梯度下降法是最早最简单,也是最为常用的最优化方法。梯度下降法实现简单,当目标函数是凸函数时,梯度下降法的解是全局解。一般情况下,其解不保证是全局最优解,梯度下降法的速度也未必是最快的。 梯度下降法的优化思想是用当前位置负梯度方向作为搜索方向,因为该方向为当前位置的最快下降方向,所以也被称为是”最速下降法“。最速下降法越接近目标值,步长越小,前进越慢。
梯度下降 法的缺点:
(1)靠近极小值时收敛速度减慢;
(2)直线搜索时可能会产生一些问题;
(3)可能会“之字形”地下降。
在机器学习中,基于基本的梯度下降法发展了两种梯度下降方法,分别为随机梯度下降法和批量梯度下降法。
比如对一个线性回归(Linear Logistics)模型,假设下面的h(x)是要拟合的函数,J( )为损失函数, 是参数,要迭代求解的值,求解出来了那最终要拟合的函数h( )就出来了。其中m是训练集的样本个数,n是特征的个数。
1)批量梯度下降法(Batch Gradient Descent,BGD)
(1)将J( )对 求偏导,得到每个theta对应的的梯度:
(2)由于是要最小化风险函数,所以按每个参数 的梯度负方向,来更新每个 :
(3)从上面公式可以注意到,它得到的是一个全局最优解,但是每迭代一步,都要用到训练集所有的数据,如果m很大,那么可想而知这种方法的迭代速度会相当的慢。所以,这就引入了另外一种方法——随机梯度下降。
对于批量梯度下降法,样本个数m,x为n维向量,一次迭代需要把m个样本全部带入计算,迭代一次计算量为m*n2。
2)随机梯度下降(Stochastic Gradient Descent,SGD)
(1)上面的风险函数可以写成如下这种形式,损失函数对应的是训练集中每个样本的粒度,而上面批量梯度下降对应的是所有的训练样本:
(2)每个样本的损失函数,对 求偏导得到对应梯度,来更新 :
(3)随机梯度下降是通过每个样本来迭代更新一次,如果样本量很大的情况(例如几十万),那么可能只用其中几万条或者几千条的样本,就已经将
迭代到最优解了,对比上面的批量梯度下降,迭代一次需要用到十几万训练样本,一次迭代不可能最优,如果迭代10次的话就需要遍历训练样本10次。但是,SGD伴随的一个问题是噪音较BGD要多,使得SGD并不是每次迭代都向着整体最优化方向。
随机梯度下降每次迭代只使用一个样本,迭代一次计算量为n2,当样本个数m很大的时候,随机梯度下降迭代一次的速度要远高于批量梯度下降方法。 两者的关系可以这样理解:随机梯度下降方法以损失很小的一部分精确度和增加一定数量的迭代次数为代价,换取了总体的优化效率的提升。增加的迭代次数远远小于样本的数量。
对批量梯度下降法和随机梯度下降法的总结:
批量梯度下降---最小化所有训练样本的损失函数,使得最终求解的是全局的最优解,即求解的参数是使得风险函数最小,但是对于大规模样本问题效率低下。
随机梯度下降---最小化每条样本的损失函数,虽然不是每次迭代得到的损失函数都向着全局最优方向, 但是大的整体的方向是向全局最优解的,最终的结果往往是在全局最优解附近,适用于大规模训练样本情况。
2. 牛顿法和拟牛顿法(Newton's method & Quasi-Newton Methods)
1)牛顿法(Newton's method)
牛顿法是一种在实数域和复数域上近似求解方程的方法。方法使用函数 f ( x )的泰勒级数的前面几项来寻找方程 f ( x ) = 0的根。牛顿法最大的特点就在于它的收敛速度很快。
具体步骤:
首先,选择一个接近函数 f ( x )零点的x0,计算相应的 f ( x 0)和切线斜率 f ' ( x 0)(这里 f ' 表示函数 f 的导数)。然后我们计算穿过点( x 0, f ( x 0))并且斜率为 f '( x 0)的直线和 x 轴的交点的 x 坐标,也就是求如下方程的解:
我们将新求得的点的 x 坐标命名为 x 1,通常 x 1会比 x 0更接近方程 f ( x ) = 0的解。因此我们现在可以利用 x 1开始下一轮迭代。迭代公式可化简为如下所示:
已经证明,如果 f '是连续的,并且待求的零点 x 是孤立的,那么在零点 x 周围存在一个区域,只要初始值 x 0位于这个邻近区域内,那么牛顿法必定收敛。 并且,如果 f ' ( x )不为0, 那么牛顿法将具有平方收敛的性能. 粗略的说,这意味着每迭代一次,牛顿法结果的有效数字将增加一倍。下图为一个牛顿法执行过程的例子。
由于牛顿法是基于当前位置的切线来确定下一次的位置,所以牛顿法又被很形象地称为是"切线法"。
关于牛顿法和梯度下降法的效率对比:
从本质上去看,牛顿法是二阶收敛,梯度下降是一阶收敛,所以牛顿法就更快。如果更通俗地说的话,比如你想找一条最短的路径走到一个盆地的最底部,梯度下降法每次只从你当前所处位置选一个坡度最大的方向走一步,牛顿法在选择方向时,不仅会考虑坡度是否够大,还会考虑你走了一步之后,坡度是否会变得更大。所以,可以说牛顿法比梯度下降法看得更远一点,能更快地走到最底部。(牛顿法目光更加长远,所以少走弯路;相对而言,梯度下降法只考虑了局部的最优,没有全局思想。)
根据wiki上的解释,从几何上说,牛顿法就是用一个二次曲面去拟合你当前所处位置的局部曲面,而梯度下降法是用一个平面去拟合当前的局部曲面,通常情况下,二次曲面的拟合会比平面更好,所以牛顿法选择的下降路径会更符合真实的最优下降路径。
注:红色的牛顿法的迭代路径,绿色的是梯度下降法的迭代路径。
牛顿法的优缺点总结:
优点:二阶收敛,收敛速度快;
缺点:牛顿法是一种迭代算法,每一步都需要求解目标函数的Hessian矩阵的逆矩阵,计算比较复杂。
2)拟牛顿法(Quasi-Newton Methods)
拟牛顿法是求解非线性优化问题最有效的方法之一,于20世纪50年代由美国Argonne国家实验室的物理学家W.C.Davidon所提出来。Davidon设计的这种算法在当时看来是非线性优化领域最具创造性的发明之一。不久R. Fletcher和M. J. D. Powell证实了这种新的算法远比其他方法快速和可靠,使得非线性优化这门学科在一夜之间突飞猛进。
拟牛顿法的本质思想是改善牛顿法每次需要求解复杂的Hessian矩阵的逆矩阵的缺陷,它使用正定矩阵来近似Hessian矩阵的逆,从而简化了运算的复杂度。 拟牛顿法和最速下降法一样只要求每一步迭代时知道目标函数的梯度。通过测量梯度的变化,构造一个目标函数的模型使之足以产生超线性收敛性。这类方法大大优于最速下降法,尤其对于困难的问题。另外,因为拟牛顿法不需要二阶导数的信息,所以有时比牛顿法更为有效。如今,优化软件中包含了大量的拟牛顿算法用来解决无约束,约束,和大规模的优化问题。
具体步骤:
拟牛顿法的基本思想如下。首先构造目标函数在当前迭代xk的二次模型:
这里Bk是一个对称正定矩阵,于是我们取这个二次模型的最优解作为搜索方向,并且得到新的迭代点:
其中我们要求步长ak 满足Wolfe条件。这样的迭代与牛顿法类似,区别就在于用近似的Hesse矩阵Bk 代替真实的Hesse矩阵。所以拟牛顿法最关键的地方就是每一步迭代中矩阵Bk的更新。现在假设得到一个新的迭代xk+1,并得到一个新的二次模型:
我们尽可能地利用上一步的信息来选取Bk。具体地,我们要求
从而得到
这个公式被称为割线方程。常用的拟牛顿法有DFP算法和BFGS算法。
原文链接: [Math] 常见的几种最优化方法 - Poll的笔记 - 博客园
㈢ 粒子群优化算法和多模态优化算法有什么区别
摘 要:,粒子群算法据自己的速度来决定搜索过程,只有最优的粒子把信息给予其他的粒子,整个搜索更新过程是跟随当前最优解的过程,所有的粒子还可以更快的收敛于最优解。由于微粒群算法简单,容易实现,与其它求解约束优化问题的方法相比较,具有一定的优势。实验结果表明,对于无约束的非线性求解,粒子群算法表现出较好的收敛性和健壮性。
关键词:粒子群算法;函数优化;极值寻优
0 引言
非线性方程的求根问题是多年来数学家努力解决的问题之一。长期以来,人们已找出多种用于解决方程求根的方法,例如牛顿法、弦割法、抛物线法等。然而,很多传统的方法仅能运用于相应的小的问题集,推广性相对较差。对于一个现实世界中的优化问题,必须尝试很多不同的方法,甚至要发明相应的新的方法来解决,这显然是不现实的。我们需要另外的方法来克服这样的困难。
粒子群算法是一种现代启发式算法,具有推广性强、鲁棒性高等特点[1]。该算法具有群体智能、内在并行性、迭代格式简单、可快速收敛到最优解所在区域等优点[2]。本文采用粒子群算法,对函数的极值进行寻优计算,实现了对函数的极值求解。
1 粒子群算法
1.1 基本原理
粒子群算法(PSO)是一种基于群体的随机优化技术,它的思想来源于对鸟群捕食行为的研究与模拟。粒子群算法与其它基于群体的进化算法相类似,选用“群体”和“进化”的概念,按照个体的适应度值进行操作,也是一种基于迭代的寻优技术。区别在于,粒子群算法中没有交叉变异等进化算子,而是将每个个体看作搜索空间中的微粒,每个微粒没有重量和体积,但都有自己的位置向量、速度向量和适应度值。所有微粒以一定的速度飞行于搜索空间中,其中的飞行速度是由个体飞行经验和群体的飞行经验动态调整,通过追踪当前搜索到的最优值来寻找全局最优值。
1.2 参数选择
粒子群算法需要修改的参数很少,但对参数的选择却十分敏感。El-Gallad A, El-Hawary M, Sallam A, Kalas A[3]主要对算法中的种群规模、迭代次数和粒子速度的选择方法进行了详细分析,利用统计方法对约束优化问题的求解论证了这 3 个参数对算法性能的影响,并给出了具有一定通用性的3 个参数选择原则[4]。
种群规模:通常根据待优化问题的复杂程度确定。
最大速度:决定粒子在一次迭代中的最大移动距离,通常设定为不超过粒子的范围宽度。
加速常数:加速常数c1和c2通常是由经验值决定的,它代表粒子向pbest和gbest靠拢的加速项的权重。一般取值为:c1=c2=2。
中止条件:达到最大迭代次数或得到最小误差要求,通常要由具体问题确定。
惯性权重:惯性权重能够针对待优化问题调整算法的局部和全局搜索能力。当该值较大时有利于全局搜索,较小时有利于局部搜索。所以通常在算法开始时设置较大的惯性权重,以便扩大搜索范围、加快收敛。而随着迭代次数的增加逐渐减小惯性权重的值,使其进行精确搜索,避免跳过最优解。
1.3 算法步骤
PSO算法步骤如下:
Step1:初始化一个规模为 m 的粒子群,设定初始位置和速度。
初始化过程如下:
(1)设定群体规模m;
(2)对任意的i,s,在[-xmax, xmax]内均匀分布,产生初始位置xis;
(3)对任意的i,s,在[-vmax, vmax]内均匀分布,产生速度vis;
(4)对任意的i,设yi=xi,保存个体。
Step2:计算每个粒子的适应度值。
Step3:对每个粒子的适应度值和得到过的最好位置pis的适应度值进行比较,若相对较好,则将其作为当前的最好位置。
Step4:对每个粒子的适应度值和全局得到过的最好位置pgs的适应度值进行比较,若相对较好,则将其作为当前的全局最好位置。
Step5:分别对粒子的所在位置和速度进行更新。
Step6:如果满足终止条件,则输出最优解;否则,返回Step2。
1.4 粒子群算法函数极值求解
粒子群算法优化是计算机智能领域,除蚁群算法外的另一种基于群体智能的优化算法。粒子群算法是一种群体智能的烟花计算技术。与遗传算法相比,粒子群算法没有遗传算法的选择(Selection)、交叉(Crossover)、变异(Mutation)等操作,而是通过粒子在解空间追随最优的粒子进行搜索。
粒子群算法流程如图所示:
粒子群为由n个粒子组成的种群X = (X1,X2,X3,…Xn).
第i个粒子表示一个D维向量Xi = (X1,X2,X3,…XD)T.
第i个粒子的速度为Vi = (Vi1,Vi2,Vi3,…ViD)T.
个体极值为Pi = (Pi1,Pi2,Pi3,…PiD)T.
全局极值为Pg = (Pg1,Pg2,Pg3,…PgD)T.
速度更新为,式中,c1和c2为其两个学习因子的参数值;r1和r2为其两个随机值。
位置更新为.
2 粒子群算法应用举例
2.1 实验问题
这是一个无约束函数的极值寻优,对于Ackley函数,
.
其中c1=20,e=2. 71289。
2.2 实验步骤
对于Ackley函数图形,选取一个凹峰进行分析,程序运行结果如图所示。
图1 Ackley函数图形
可以看出,选取区间内的Ackley函数图形只有一个极小值点。因此,对于该段函数进行寻优,不会陷入局部最小。采用粒子群算法对该函数进行极值寻优。
首先,进行初始化粒子群,编写的MATLAB代码如下:
% 初始化种群
for i=1:sizepop
x1 = popmin1 (popmax1-popmin1)*rand;
% 产生随机个体
x2 = popmin2 (popmax2-popmin2)*rand;
pop(i,1) = x1; % 保存产生的随机个体
pop(i,2) = x2;
fitness(i) = fun([x1,x2]); % 适应度值
V(i,1) = 0; % 初始化粒子速度
V(i,2) = 0;
end
程序运行后所产生的个体值为:
表1 函数个体值
然后,根据待寻优的目标函数,计算适应度值。待寻优的目标函数为:
function y = fun(x)
y=-20*exp(-0.2*sqrt((x(1)^2x(2)^2)/2))-exp((cos(2*pi*x(1)) cos(2*pi*x(2)))/2) 20 2.71289;
根据每一组个体,通过目标函数,得到的适应度值为:
表2 函数适应度值
搜索个体最优极值,即搜索最小的适应度值,我们可利用MATLAB绘图将所有个体的适应度值绘成plot图查看相对最小值。
图3 函数适应度plot图
从图中可看出,当个体=20时,得到相对最小值,在程序中,将其保存下来。
之后进行迭代寻优,直到满足终止条件。
最后,得到的最优值为:
图4 MATLAB运行得到结果
迭代后得到的运行结果图如下:
图5 迭代曲线图
2.3 实验结果
通过图5中可看出,该函数的寻优是收敛的,最优个体和实际情况较吻合。因此,采用粒子群算法进行函数极值寻优,快速、准确且鲁棒性较好。
3 结论
本文阐述了粒子群算法求解最化问题的过程,实验结果表明了该算法对于无约束问题的可行性。与其它的进化算法相比,粒子群算法容易理解、编码简单、容易实现。但是参数的设置对于该算法的性能却有很大的影响,例如控制收敛,避免早熟等。在未来的工作中,将努力于将其它计算智能算法或其它优化技术应用于粒子群算法中,以进一步提高粒子群算法的性能。
㈣ 多目标优化算法
多目标优化算法如下:
一、多目标进化算法(MOEA)
1、MOEA通过对种群X(t)执行选择、交叉和变异等操作产生下一代种群X(t+1)。
2、在每一代进化过程中 ,首先将种群X(t)中的所有非劣解个体都复制到外部集A(t)中。
2、智能优化算法:包括进化算法(简称EA)、粒子群算法(简称PSO)等。
两者的区别:传统优化技术一般每次能得到Pareo解集中的一个,而用智能算法来求解,可以得到更多的Pareto解,这些解构成了一个最优解集,称为Pareto最优解(任一个目标函数值的提高都必须以牺牲其他目标函数值为代价的解集)。
㈤ 优化算法是什么
什么是智能优化算法 10分
智能优化算法是一种启发式优化算法,包括遗传算法、蚁群算法、禁忌搜索算法、模拟退火算法、粒子群算法等。·智能优化算法一般是针对具体问题设计相关的算法,理论要求弱,技术性强。一般,我们会把智能算法与最优化算法进行比较,相比之下,智能算浮速度快,应用性强。
传统优化算法和现代优化算法包括哪些.区别是什么
1. 传统优化算法一般是针对结构化的问题,有较为明确的问题和条件描述,如线性规划,二次规划,整数规划,混合规划,带约束和不带约束条件等,即有清晰的结构信息;而智能优化算法一般针对的是较为普适的问题描述,普遍比较缺乏结构信息。
2. 传统优化算法不少都属于凸优化范畴,有唯一明确的全局最优点;而智能优化算法针对的绝大多数是多极值问题,如何防止陷入局部最优而尽可能找到全局最优是采纳智能优化算法的根本原因:对于单极值问题,传统算法大部分时候已足够好,而智能算法没有任何优势;对多极值问题,智能优化算法通过其有效设计可以在跳出局部最优和收敛到一个点之间有个较好的平衡,从而实现找到全局最优点,但有的时候局部最优也是可接受的,所以传统算法也有很大应用空间和针对特殊结构的改进可能。
3. 传统优化算法一般是确定性算法,有固定的结构和参数,计算复杂度和收敛性可做理论分析;智能优化算法大多属于启发性算法,能定性分析却难定量证明,且大多数算法基于随机特性,其收敛性一般是概率意义上的,实际性能不可控,往往收敛速度也比较慢,计算复杂度较高。
最新的优化算法是什么?
这个范围太广了吧?列出来一篇文献综述都列不完
多目标优化算法的多目标是什么意思
多目标优化的本质在于,大多数情况下,某目标的改善可能引起其他目标性吵灶能的降低,同时使多个目标均达到最优是不可能的,只能在各目标之间进行协调权衡和折中处理,使所有目标函数尽可能达到最优,而且问题的最优解由数量众多,甚至无穷大的Pareto最优解组成。
编程中的优化算法问题
1. 算法优化的过程是学习思维的过程。学习数学实质上就是学习思维。也就是说数学教育的目的不仅仅是要让学生掌握数学知识(包括计算技能),更重要的要让学生学会数学地思维。算法多样化具有很大的教学价值,学生在探究算法多样化的过程中,培养了思维的灵活性,发展了学生的创造性。在认识算法多样化的教学价值的同时,我们也认识到不同算法的思维价值是不相等的。要充分体现算法多样化的教育价值,教师就应该积极引导学生优化算法,把优化算法的过程看作是又一次发展学生思维、培养学生能力的机会,把优化算法变成学生又一次主动建构的学习活动。让学生在优化算法的过程中,通过对各种算法的比较和分析,进行评价,不仅评价其正确升枝扮性——这样做对吗?而且评价其合理性——这样做有道理吗?还要评价其科学性——这样做是最好的吗?这样的优化过程,对学生思维品质的提高无疑是十分有用的,学生在讨论、交流和反思的择优过程中逐步学会“多中择优,优中择简”的数学思想方法。教师在引导学生算法优化的过程中,帮助学生梳理思维过程,总结学习方法,养成思维习惯,形成学习能力,长此以往学生的思维品质一定能得到很大的提高。2. 在算法优化的过程中培养学生算法优化搭厅的意识和习惯。意识是行动的向导,有些学生因为思维的惰性而表现出算法单一的状态。明明自己的算法很繁琐,但是却不愿动脑做深入思考,仅仅满足于能算出结果就行。要提高学生的思维水平,我们就应该有意识的激发学生思维和生活的联系,帮助他们去除学生思维的惰性,鼓励他们从多个角度去思考问题,然后择优解决;鼓励他们不能仅仅只关注于自己的算法,还要认真倾听他人的思考、汲取他人的长处;引导他们去感受各种不同方法的之间联系和合理性,引导他们去感受到数学学科本身所特有的简洁性。再算法优化的过程中就是要让学生感受计算方法提炼的过程,体会其中的数学思想方法,更在于让学生思维碰撞,并形成切合学生个人实际的计算方法,从中培养学生的数学意识,使学生能自觉地运用数学思想方法来分析事物,解决问题。这样的过程不仅是对知识技能的一种掌握和巩固,而且可以使学生的思维更开阔、更深刻。3. 算法优化是学生个体学习、体验感悟、加深理解的过程。算法多样化是每一个学生经过自己独立的思考和探索,各自提出的方法,从而在群体中出现了许多种算法。因此,算法多样化是群体学习能力的表现,是学生集体的一题多解,而不是学生个体的多种算法。而算法的优化是让学生在群体比较的过程中优化,通过交流各自得算法,学生可以互相借鉴,互相吸收,互相补充,在个体感悟的前提下实施优化。因为优化是学生对知识结构的再构建过程,是发自学生内心的行为和自主的活动。但是,在实施算法最优化教学时应给学生留下一定的探索空间,以及一个逐渐感悟的过程。让学生在探索中感悟,在比较中感悟,在选择中感悟。这样,才利于发展学生独立思考能力和创造能力。4. 优化算法也是学生后继学习的需要。小学数学是整个数学体系的基础,是一个有着严密逻辑关系的子系统。算法教学是小学数学教学的一部分,它不是一个孤立的教学点。从某一教学内容来说,也许没有哪一种算法是最好的、最优的,但从算法教学的整个系统来看,必然有一种方法是最好的、最优的,是学生后继学习所必需掌握的。在算法多样化的过程中,当学生提出各种算法后,教师要及时引导学生进行比较和分析,在比较和分析的过程中感受不同策略的特点,领悟不同方法的算理,分析不同方法的优劣,做出合理的评价,从而选择具有普遍意义的、简捷的、并有利于后继学习的最优方法。5. 优化也是数学学科发展的动力。数学是一门基础学科,是一门工具学科,它的应用十分广泛。数学之所以有如此广泛的应用......>>
现在哪些智能优化算法比较新
智能优化算法是一种启发式优化算法,包括遗传算法、蚁群算法、禁忌搜索算法、模拟退火算法、粒子群算法等。·智能优化算法一般是针对具体问题设计相关的算法,理论要求弱,技术性强。一般,我们会把智能算法与最优化算法进行比较,
最新的智能优化算法有哪些呢,论文想研究些新算法,但是不知道哪些算法...
答:蚁群其实还是算比较新的。 更新的也只是这些算法的最后改进吧。演化算法就有很多。随便搜一篇以这些为标题,看06年以来的新文章就可以了。 各个领域都有的。否则就是到极限,也就没有什么研究前景了。
算法实现函数优化是什么意思
比如给一个函数 f(x1,x2)=x1^2+x2^2,求这个函数最小数值。。。
数学上,我们一般都是求偏导,然后一堆的,但是算法上,我们只要使用梯度下降,几次迭代就可以解决问题。。。
优化算法停止条件是什么?
适应度越大,解越优。
判断是否已得到近似全局最优解的方法就是遗传算法的终止条件。 在最大迭代次数范围内可以选择下列条件之一作为终止条件:
1. 最大适应度值和平均适应度值变化不大、趋于稳定;
2. 相邻GAP代种群的距离小于可接受值,参考“蒋勇,李宏.改进NSGA-II终止判断准则[J].计算机仿真.2009. Vol.26 No.2”
智能优化算法中cell是什么意思
智能优化主要是用来求最优解的,通过多次迭代计算找出稳定的收敛的最优解或近似最优解,例如复杂的单模态或多模态函数的求最值问题。