1. 9.2 回溯算法的例子
在4 * 4的方格棋盘上放置4个皇后棋子,使得没有两个皇后在同一行、同一列,也不在同一条45度的斜线上, 问有多少种布局?
回溯算法的解一般是向量,而这个题也不例外,设4维向量的<x1,x2,x3,x4>,Xi中i表示第几个皇后,Xi表示在棋盘第i行的位置,比如其中一个解是<2,4,1,3>,如下图
1.四皇后问题中,叶节点就是一个解。
2.四皇后每一个节点的子树代表着下一个皇后可以放的列数,因为都是n,所以子树都是n叉树,故四皇后是一颗 n叉树
3.四皇后的解至少有两个,因为棋盘可以沿着中心线翻折
有n种物品,每种物品只有1个。第i种物品价值为vi,重量为wi,i=1,2,3...n. 问如何选择放入背包的物品,使得总重量不超过B,而价值达到最大?
同样,此问题的解可用一个向量来表示,该向量就代表了所有的物品,如果对应物品为1,则表示装入背包,反之,没有被装入。
因此,回溯的每层可以表示为对应的物品,分支左右可以表示取或者不取(向量中表示为1或0)
总而言之,每一个节点也就是物品只有0和1两种状态,因此该树一棵二叉树,或者为 子集树
1.选择第一个物品,目前总重量为8,总价值为12。
2.再选择第二个物品,总重量为14 > 13,触发回溯。
3.不选择第二个物品,选择第三个商品,总重量是12,总价值为21。
4.再选择第四个物品,总重量为15 > 13,触发回溯。
5.不选择第四个物品,总重量为12,总价值为21,与目前最优解价值进行比较,如果最优解价值大于21则替换目前的最优解向量和最优解价值。
1.背包问题只有在叶节点才能生成一个满足条件的解,而之后将该解和最优解比较。
2.背包问题必须遍历完所有的分支,才能够获得最终的解。
3.背包问题是一颗子集树。
有n个城市,已知任两个城市之间的距离, 求一条每个城市恰好经过一次的回路,使得总长度最小 。
货郎问题中主要的一点就是每一个点(除了第一个点)其他点必须经过且只能经过1次,这就很像数学中的排列。
因此,我们采用一个向量来表示货郎问题的城市排列
1.货郎问题是一颗分支不断减少的排列数(和数学的排列类似)
2.货郎问题也得遍历完所有的情况,比较后得出最优解。
1.解都是用向量表示
2.搜索空间都是树
3.搜索策略多种,有深度优先、宽度优先和跳跃式遍历搜索树。
2. 六、递归与回溯算法
在计算机领域里面,很多问题都可以要采用递归算法来解决。递归中,最长用到的方法就是回溯法。我们具体分析问题的时候,可以发现这类问题本质是一个树的形状。
递归算法的本质还是将原来的问题转化为了更小的同一问题,进行解决。一般注意两点:
1、递归终止的条件。对应到了递归算法中最基本的问题,也是最最简单的问题。
2、递归过程。递归过程需要将原问题一步一步的推到更小的 同一 问题,更小的意思就是子问题解决起来就更加的简单。有写情况是能够找到一个递推的公式的。这个过程中就需要透彻的去理解递归函数的意义。明确这个函数的输入和输出是什么,这样来写的话,就清晰多了。
因为有了这样的递归公式,那么我们就很容易的能看出来递归的终止条件就是我们知道的f(0)和f(1)了。有了f(0)和f(1)之后,我们就能够继续的递推出f(3)一直到f(n)了。
但是我们现在才用一个递归算法的思想来解决这个问题:
像我们常见的数据结构如链表、树、图等都是有着天然的递归结构的,链表由于是一个线性的结构,那么通常我们也是能够直接循环遍历就能解决问题的,但是这里我们用递归法来解决一下LeetCode上面的问题
LeetCode 203 移除链表元素
分析:链表的结构可以理解成一个节点连接这一个更短的链表,这样依次一直看下去,直到最后一个节点None,那么我们这个时候的递归终止条件就是head指向None了,返回的就是None
深入的理解递归算法之后,我们就开始进行回溯法的学习。通过LeetCode上面的几道题,我们来深入的探讨一下递归与回溯法的应用。
持续更新中...
数据结构与算法系列博客:
一、数据结构与算法概述
二、数组及LeetCode典型题目分析
三、链表(Linked list)以及LeetCode题
四、栈与队列(Stack and Queue
五、树(Trees)
六、递归与回溯算法
七、动态规划
八、排序与搜索
九、哈希表
参考资料
1、
2、
3、
3. 回溯算法与贪心算法
回溯是递归的副产品,只要有递归就会有回溯 ,所以回溯法也经常和二叉树遍历,深度优先搜索混在一起,因为这两种方式都是用了递归。
回溯法就是暴力搜索,并不是什么高效的算法,最多再剪枝一下。
回溯算法能解决如下问题:
组合问题:N个数里面按一定规则找出k个数的集合
排列问题:N个数按一定规则全排列,有几种排列方式
切割问题:一个字符串按一定规则有几种切割方式
子集问题:一个N个数的集合里有多少符合条件的子集
棋盘问题:N皇后,解数独等等
回溯算法的本质是纵向遍历
回溯算法模板为
贪心的本质是选择每一阶段的局部最优,从而达到全局最优
贪心算法一般分为如下四步:
将问题分解为若干个子问题
找出适合的贪心策略
求解每一个子问题的最优解
将局部最优解堆叠成全局最优解
eg:摆动序列
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。
例如, [1,7,4,9,2,5] 是一个摆动序列,因为差值 (6,-3,5,-7,3) 是正负交替出现的。相反, [1,4,7,2,5] 和 [1,7,4,5,5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。
示例 2:
输入: [1,17,5,10,13,15,10,5,16,8]
输出: 7
解释: 这个序列包含几个长度为 7 摆动序列,其中一个可为[1,17,10,13,10,16,8]。