导航:首页 > 源码编译 > 递推算法必须包括

递推算法必须包括

发布时间:2023-08-30 03:30:21

1. 递推的递推算法

【例1】
植树节那天,有五位同学参加了植树活动,他们完成植树的棵树都不相同。问第一位同学植了多少棵时,他指着旁边的第二位同学说比他多植了两棵;追问第二位同学,他又说比第三位同学多植了两棵;... 如此,都说比另一位同学多植两棵。最后问到第五位同学时,他说自己植了10棵。到底第一位同学植了多少棵树?
分析:设第一位同学植树的棵树为a1,欲求a1,需从第五位同学植树的棵数a5入手,根据“多两棵”这个规律,按照一定顺序逐步进行推算:
(1) a5=10;
(2) a4=a5+2=12;
(3) a3=a4+2=14;
(4) a2=a3+2=16;
(5) a1=a2+2=18;
Pascal程序:
Program Examl;
Var i,a:byte;
begin
a:=10;
for i:= 1 to 4 do
a:=a+2;
writeln('The Num is' ,a);
readln;
end.
本程序的递推运算可用下图示表示:
初始值a:=10 ----- i=1,a=a+2(12) ----- i=2,a=a+2(14) ------ i=3,a=a+2(16) ----- i=4,a=a+2(18) ---- 输出a值
例2:
十本不同的书放在书架上。现重新摆放,使每本书都不在原来放的位置。有几种摆法?
当n个编号元素放在n个编号位置,元素编号与位置编号各不对应的方法数用M(n)表示,那么M(n-1)就表示n-1个编号元素放在n-1个编号位置,各不对应的方法数,其它类推.
第一步,把第n个元素放在一个位置,比如位置k,一共有n-1种方法;
第二步,放编号为k的元素,这时有两种情况.1,把它放到位置n,那么,对于剩下的n-2个元素,就有M(n-2)种方法;2,不把它放到位置n,这时,对于这n-1个元素,有M(n-1)种方法;
综上得到
M(n)=(n-1)[M(n-2)+M(n-1)]
递推算法以初始(起点)值为基础,用相同的运算规律,逐次重复运算,直至运算结束。这种从“起点”重复相同的方法直至到达一定“边界”,犹如单向运动,用循环可以实现。递推的本质是按规律逐次推出(计算)先一步的结果。

2. c语言(高分)

1.相对于递归算法,递推算法免除了数据进出栈的过程,也就是说,不需要函数不断的向边界值靠拢,而直接从边界出发,直到求出函数值.
比如阶乘函数:f(n)=n*f(n-1)
在f(3)的运算过程中,递归的数据流动过程如下:
f(3){f(i)=f(i-1)*i}-->f(2)-->f(1)-->f(0){f(0)=1}-->f(1)-->f(2)--f(3){f(3)=6}
而递推如下:
f(0)-->f(1)-->f(2)-->f(3)
由此可见,递推的效率要高一些,在可能的情况下应尽量使用递推.但是递归作为比较基础的算法,它的作用不能忽视.所以,在把握这两种算法的时候应该特别注意.
2.所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
分类
在计算机科学所使用的排序算法通常被分类为:
计算的复杂度(最差、平均、和最好表现),依据串行(list)的大小(n)。一般而言,好的表现是O。(n log n),且坏的行为是Ω(n2)。对于一个排序理想的表现是O(n)。仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要Ω(n log n)。
记忆体使用量(以及其他电脑资源的使用)
稳定度:稳定排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序。也就是一个排序算法是稳定的,就是当有两个有相等关键的纪录R和S,且在原本的串行中R出现在S之前,在排序过的串行中R也将会是在S之前。
一般的方法:插入、交换、选择、合并等等。交换排序包含冒泡排序(bubble sort)和快速排序(quicksort)。选择排序包含shaker排序和堆排序(heapsort)。
当相等的元素是无法分辨的,比如像是整数,稳定度并不是一个问题。然而,假设以下的数对将要以他们的第一个数字来排序。
(4, 1) (3, 1) (3, 7) (5, 6)
在这个状况下,有可能产生两种不同的结果,一个是依照相等的键值维持相对的次序,而另外一个则没有:
(3, 1) (3, 7) (4, 1) (5, 6) (维持次序)
(3, 7) (3, 1) (4, 1) (5, 6) (次序被改变)
不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。不稳定排序算法可以被特别地时作为稳定。作这件事情的一个方式是人工扩充键值的比较,如此在其他方面相同键值的两个物件间之比较,就会被决定使用在原先资料次序中的条目,当作一个同分决赛。然而,要记住这种次序通常牵涉到额外的空间负担。
排列算法列表
在这个表格中,n是要被排序的纪录数量以及k是不同键值的数量。
稳定的
冒泡排序(bubble sort) — O(n2)
鸡尾酒排序 (Cocktail sort, 双向的冒泡排序) — O(n2)
插入排序 (insertion sort)— O(n2)
桶排序 (bucket sort)— O(n); 需要 O(k) 额外 记忆体
计数排序 (counting sort) — O(n+k); 需要 O(n+k) 额外 记忆体
归并排序 (merge sort)— O(n log n); 需要 O(n) 额外记忆体
原地归并排序 — O(n2)
二叉树排序 (Binary tree sort) — O(n log n); 需要 O(n) 额外记忆体
鸽巢排序 (Pigeonhole sort) — O(n+k); 需要 O(k) 额外记忆体
基数排序 (radix sort)— O(n·k); 需要 O(n) 额外记忆体
Gnome sort — O(n2)
Library sort — O(n log n) with high probability, 需要 (1+ε)n 额外记忆体
不稳定
选择排序 (selection sort)— O(n2)
希尔排序 (shell sort)— O(n log n) 如果使用最佳的现在版本
Comb sort — O(n log n)
堆排序 (heapsort)— O(n log n)
Smoothsort — O(n log n)
快速排序 (quicksort)— O(n log n) 期望时间, O(n2) 最坏情况; 对于大的、乱数串行一般相信是最快的已知排序
Introsort — O(n log n)
Patience sorting — O(n log n + k) 最外情况时间, 需要 额外的 O(n + k) 空间, 也需要找到最长的递增子序列(longest increasing subsequence)
不实用的排序算法
Bogo排序 — O(n × n!) 期望时间, 无穷的最坏情况。
Stupid sort — O(n3); 递回版本需要 O(n2) 额外记忆体
Bead sort — O(n) or O(√n), 但需要特别的硬体
Pancake sorting — O(n), 但需要特别的硬体
排序的算法
排序的算法有很多,对空间的要求及其时间效率也不尽相同。下面列出了一些常见的排序算法。这里面插入排序和冒泡排序又被称作简单排序,他们对空间的要求不高,但是时间效率却不稳定;而后面三种排序相对于简单排序对空间的要求稍高一点,但时间效率却能稳定在很高的水平。基数排序是针对关键字在一个较小范围内的排序算法。
插入排序
冒泡排序
选择排序
快速排序
堆排序
归并排序
基数排序
希尔排序
插入排序
插入排序是这样实现的:
首先新建一个空列表,用于保存已排序的有序数列(我们称之为"有序列表")。
从原数列中取出一个数,将其插入"有序列表"中,使其仍旧保持有序状态。
重复2号步骤,直至原数列为空。
插入排序的平均时间复杂度为平方级的,效率不高,但是容易实现。它借助了"逐步扩大成果"的思想,使有序列表的长度逐渐增加,直至其长度等于原列表的长度。
冒泡排序
冒泡排序是这样实现的:
首先将所有待排序的数字放入工作列表中。
从列表的第一个数字到倒数第二个数字,逐个检查:若某一位上的数字大于他的下一位,则将它与它的下一位交换。
重复2号步骤,直至再也不能交换。
冒泡排序的平均时间复杂度与插入排序相同,也是平方级的,但也是非常容易实现的算法。
选择排序
选择排序是这样实现的:
设数组内存放了n个待排数字,数组下标从1开始,到n结束。
i=1
从数组的第i个元素开始到第n个元素,寻找最小的元素。
将上一步找到的最小元素和第i位元素交换。
如果i=n-1算法结束,否则回到第3步
选择排序的平均时间复杂度也是O(n²)的。
快速排序
现在开始,我们要接触高效排序算法了。实践证明,快速排序是所有排序算法中最高效的一种。它采用了分治的思想:先保证列表的前半部分都小于后半部分,然后分别对前半部分和后半部分排序,这样整个列表就有序了。这是一种先进的思想,也是它高效的原因。因为在排序算法中,算法的高效与否与列表中数字间的比较次数有直接的关系,而"保证列表的前半部分都小于后半部分"就使得前半部分的任何一个数从此以后都不再跟后半部分的数进行比较了,大大减少了数字间不必要的比较。但查找数据得另当别论了。
堆排序
堆排序与前面的算法都不同,它是这样的:
首先新建一个空列表,作用与插入排序中的"有序列表"相同。
找到数列中最大的数字,将其加在"有序列表"的末尾,并将其从原数列中删除。
重复2号步骤,直至原数列为空。
堆排序的平均时间复杂度为nlogn,效率高(因为有堆这种数据结构以及它奇妙的特征,使得"找到数列中最大的数字"这样的操作只需要O(1)的时间复杂度,维护需要logn的时间复杂度),但是实现相对复杂(可以说是这里7种算法中比较难实现的)。
看起来似乎堆排序与插入排序有些相像,但他们其实是本质不同的算法。至少,他们的时间复杂度差了一个数量级,一个是平方级的,一个是对数级的。
平均时间复杂度
插入排序 O(n2)
冒泡排序 O(n2)
选择排序 O(n2)
快速排序 O(n log n)
堆排序 O(n log n)
归并排序 O(n log n)
基数排序 O(n)
希尔排序 O(n1.25)
3.索引查找是在索引表和主表(即线性表的索引存储结构)上进行的查找。索引查找的过程是:首先根据给定的索引值K1,在索引表上查找出索引值等于KI的索引项,以确定对应予表在主表中的开始位置和长度,然后再根据给定的关键字K2,茬对应的子表中查找出关键字等于K2的元素(结点)。对索引表或子表进行查找时,若表是顺序存储的有序表,则既可进行顺序查找,也可进行二分查找,否则只能进行顺序查找。
设数组A是具有mainlist类型的一个主表,数组B是具有inde)dist类型的在主表A 上建立的一个索引表,m为索引表B的实际长度,即所含的索引项的个数,KI和K2分别为给定待查找的索引值和关键字(当然它们的类型应分别为索引表中索引值域的类型和主表中关键字域在索引存储中,不仅便于查找单个元素,而且更便于查找一个子表中的全部元素。当需要对一个子袁中的全部元素依次处理时,只要从索引表中查找出该子表的开始位
置即可。由此开始位置可以依次取出该子表中的每一个元素,所以整个查找过程的时间复杂度为,若不是采用索引存储,而是采用顺序存储,即使把它组织成有序表而进行二分查找时,索引查找一个子表中的所有元素与二分查找一个子表中的所有元素相比。
若在主表中的每个子表后都预留有空闲位置,则索引存储也便于进行插入和删除运算,因为其运算过程只涉及到索引表和相应的子表,只需要对相应子表中的元素进行比较和移动,与其它任何子表无关,不像顺序表那样需涉及到整个表中的所有元素,即牵一发而动全身。
在线性表的索引存储结构上进行插入和删除运算的算法,也同查找算法类似,其过程为:首先根据待插入或删除元素的某个域(假定子表就是按照此域的值划分的)的值查找索引表,确定出对应的子表,然后再根据待插入或删除元素的关键字,在该子表中做插入或删除元素的操作。因为每个子表不是顺序存储,就是链接存储,所以对它们做插入或删除操作都是很简单的。
4.插入法排序
#define N 10
#include"stdio.h"
main()
{ int i,j,k,t,a[N];
clrscr();
printf("Please input %d numbers:\n",N);
for(i=0;i<N;i++)
scanf("%d",&a[i]);
for(i=1;i<N;i++)
{
for(j=0;j<i;j++)
{if(a[j]>a[i])
{t=a[i];
for(k=i;k>=j;k--)
a[k]=a[k-1];
a[j]=t;
}
}
}
printf("small to big order:\n");
for(i=0;i<N;i++)
printf("%-2d",a[i]);
printf("\n");
getch();
}

3. Pascal算法之回溯及递推详细介绍、

在程序编辑过程中,我们可能会遇到这样一类问题,出题者告诉你数列的前几个数,或通过计算机获取了数列的前几个数,要求编程者求出第N项数或所有的数列元素(如果可以枚举的话),或求前N项元素之和。这种从已知数据入手,寻找规则,推导出后面的数的算法,称这递推算法。

在处理递推问题时,我们有时遇到的递推关系是十分明显的,简单地写出递推关系式,就可以逐项递推,即由第i项推出第i+1项,我们称其为显示递推关系。但有的递推关系,要经过仔细观察,甚至要借助一些技巧,才能看出它们之间的关系,我们称其为隐式的递推关系。

递推算法的关键是认真分析题意,发现递推关系,正确写出递推公式,求得边界条件,然后用循环实现即可。总结

1.递推算法的基本形式,是指编程者让计算机循环求得一序列数值,而后一项的计算结果是由上一项或多项推导出来的。有时,我们为求得一个数列的某一项,我们不得不从第一项开始,逐个计算前面每一项的值。虽然这样做的效率不很高,但它能帮助我们解决许多实际问题。

2.无论是顺着还是逆着递推,其关键是递推公式是否正确,边界条件是否正确。二者有一个出错。则所有递推结果将都是错误的。

【】

例1:已知数列1,2,5,10,17,26,37...求数列的第n项。

通过分析,我们可以发现,数列后面的数在前一项的基础上以1,3,5,7,9,11的规律增长,则可以得出增长规律的表达式为2*n-3,也就是a(1)=1,a(n)=a(n-1)+2*n-3;

还有一个规律,我们可以发现每一项依次为从0开始的自然数的平方再加1,即

(n-1)2+1,第一项(1-1)2+1,第二项(2-1)2+1,第三项(3-1)2+1... 例2:阶梯问题:题目的意思是:有N级阶梯,可以一步走上一级,也可以一步走两级,求从阶梯底走到顶端可以有多少种不同的走法。

这是一个隐式的递推关系,如果编程者不能找出这个递推关系,可能就无法做出这题来。我们来分析一下:走上第一级的方法只有一种,走上第二级的方法却有两种(两次走一级或一次走两级),走上第三级的走法,应该是走上第一级的方法和走上第二级的走法之和(因从第一级和第二级,都可以经一步走至第三级,也就是说增加的第三级有两种处理方法,第一种就是直接作为一级走一步,那么就和两级的走法一致,另一种就是与第二级合并作一步走,那么就和一级的走法一致,加起来就是一级的方法和二级的走法之和),推广到走上第i级,是走上第i-1级的走法与走上第i-2级的走法之和。很明显,这是一个菲波拉契数列。到这里,读者应能很熟练地写出这个程序。在以后的程序习题中,我们可能还会遇到菲波拉契数列变形以后的结果:如f(i)=f(i-1)+2f(i-2),或f(i)=f(i-1)+f(i-2)+f(i-3)等。

例3:猴子吃桃问题:山中住有五只猴。一天,老大看见一堆桃子,想把桃子据为已有,却担心让老二老三知道了说自己太贪心。于是将桃分成相等的两份,却发现剩余一个,于是,老大吃掉这一个以后,再带走这堆桃的二分之一。第二天,老二也看到了这堆桃,其想法和做法与老大一样,老三老四老五也和他们的兄长想到一块去了。结果等老五吃完一个,带走一半以后,这堆桃还剩余11个。请编程计算当初这堆桃共有多少个。

这个下题目明眼人一看便知,我们如果按兄弟吃桃把桃的相反顺序倒推过去,就能知道当初桃子的总数。其递推的公式是a[n-1]=a[n]*2+1。递推的初始值是a[5]=11(又称边界条件),待求a[0]的值。相信现在大家能很容易就能写出正确的程序。在这里不过是想说明一下,递推算法不仅可以顺着推、也可逆着推的道理。

【】

回溯算法也叫试探法,它是一种系统地搜索问题的解的方法。回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。

用回溯算法解决问题的一般步骤为:

一、定义一个解空间,它包含问题的解。

二、利用适于搜索的方法组织解空间。

三、利用深度优先法搜索解空间。

四、利用限界函数避免移动到不可能产生解的子空间。

问题的解空间通常是在搜索问题的解的过程中动态产生的,这是回溯算法的一个重要特性。

回溯法是一个既带有系统性又带有跳跃性的的搜索算法。它在包含问题的所有解的解空间树中,按照深度优先的策略,从根结点出发搜索解空间树。算法搜索至解空间树的任一结点时,总是先判断该结点是否肯定不包含问题的解。如果肯定不包含,则跳过对以该结点为根的子树的系统搜索,逐层向其祖先结点回溯。否则,进入该子树,继续按深度优先的策略进行搜索。回溯法在用来求问题的所有解时,要回溯到根,且根结点的所有子树都已被搜索遍才结束。而回溯法在用来求问题的任一解时,只要搜索到问题的一个解就可以结束。这种以深度优先的方式系统地搜索问题的解的算法称为回溯法,它适用于解一些组合数较大的问题.

[递推是学习材料,回溯是网络]

江静
游客 回答于:2010-8-29 15:05:18
递归

递归是计算机科学的一个重要概念,递归的方法是程序设计中有效的方法,采用递归编写

程序能是程序变得简洁和清晰.

2.1 递归的概念


1.概念

一个过程(或函数)直接或间接调用自己本身,这种过程(或函数)叫递归过程(或函数).

如:

procere a;

begin

.

.

.

a;

.

.

.

end;

这种方式是直接调用.

又如:

procere b; procere c;

begin begin

. .

. .

. .

c; b;

. .

. .

. .

end; end;

这种方式是间接调用.

例1计算n!可用递归公式如下:

1 当 n=0 时

fac(n)={n*fac(n-1) 当n>0时

可编写程序如下:

program fac2;

var

n:integer;

function fac(n:integer):real;

begin

if n=0 then fac:=1 else fac:=n*fac(n-1)

end;

begin

write('n=');readln(n);

writeln('fac(',n,')=',fac(n):6:0);

end.例2 楼梯有n阶台阶,上楼可以一步上1阶,也可以一步上2阶,编一程序计算共有多少种不同的走法.

设n阶台阶的走法数为f(n)

显然有

1 n=1

f(n)={2 n=2

f(n-1)+f(n-2) n>2

可编程序如下:

program louti;

var n:integer;

function f(x:integer):integer;

begin

if x=1 then f:=1 else

if x=2 then f:=2 else f:=f(x-1)+f(x-2);

end;

begin

write('n=');read(n);

writeln('f(',n,')=',f(n))

end.

2.2 如何设计递归算法
1.确定递归公式

2.确定边界(终了)条件

练习:

用递归的方法完成下列问题

1.求数组中的最大数

2.1+2+3+...+n

3.求n个整数的积

4.求n个整数的平均值

5.求n个自然数的最大公约数与最小公倍数

6.有一对雌雄兔,每两个月就繁殖雌雄各一对兔子.问n个月后共有多少对兔子?7.已知:数列1,1,2,4,7,13,24,44,...求数列的第 n项.
2.3典型例题

例3 梵塔问题

如图:已知有三根针分别用1,2,3表示,在一号针中从小放n个盘子,现要求把所有的盘子

从1针全部移到3针,移动规则是:使用2针作为过度针,每次只移动一块盘子,且每根针上

不能出现大盘压小盘.找出移动次数最小的方案.

程序如下:

program fanta;

var

n:integer;

procere move(n,a,b,c:integer);

begin

if n=1 then writeln(a,'--->',c)

else begin

move(n-1,a,c,b);

writeln(a,'--->',c);

move(n-1,b,a,c);

end;

end;

begin

write('Enter n=');

read(n);

move(n,1,2,3);

end.

例4 快速排序

快速排序的思想是:先从数据序列中选一个元素,并将序列中所有比该元素小的元素都放到它的右边或左边,再对左右两边分别用同样的方法处之直到每一个待处理的序列的长度为1, 处理结束.

程序如下:

program kspv;
const n=7;
type
arr=array[1..n] of integer;
var
a:arr;
i:integer;
procere quicksort(var b:arr; s,t:integer);
var i,j,x,t1:integer;
begin
i:=s;j:=t;x:=b[i];
repeat
while (b[j]>=x) and (j>i) do j:=j-1;
if j>i then begin t1:=b[i]; b[i]:=b[j];b[j]:=t1;end;
while (b[i]<=x) and (i<j) do i:=i+1;
if i<j then begin t1:=b[j];b[j]:=b[i];b[i]:=t1; end
until i=j;
b[i]:=x;
i:=i+1;j:=j-1;
if s<j then quicksort(b,s,j);
if i<t then quicksort(b,i,t);
end;
begin
write('input data:');
for i:=1 to n do read(a[i]);
writeln;
quicksort(a,1,n);
write('output data:');
for i:=1 to n do write(a[i]:6);
writeln;
end.

练习:

1.计算ackerman函数值:

n+1 m=0

ack(m,n)={ ack(m-1,1) m<>0 ,n=0

ack(m-1,ack(m,n-1)) m<>0,n<>0

求ack(5,4)回溯

回溯是按照某种条件往前试探搜索,若前进中遭到失败,则回过头来另择通路继续搜索.

3.1 回溯的设计

1.用栈保存好前进中的某些状态.

2.制定好约束条件

例1由键盘上输入任意n个符号;输出它的全排列.

program hh;
const n=4;
var i,k:integer;
x:array[1..n] of integer;
st:string[n];
t:string[n];
procere input;
var i:integer;
begin
write('Enter string=');readln(st);
t:=st;
end;
function place(k:integer):boolean;
var i:integer;
begin
place:=true;
for i:=1 to k-1 do
if x[i]=x[k] then
begin place:=false; break end ;
end;
procere print;
var i:integer;
begin
for i:=1 to n do write(t[x[i]]);
writeln;
end;
begin
input;
k:=1;x[k]:=0;
while k>0 do
begin
x[k]:=x[k]+1;
while (x[k]<=n) and (not place(k)) do x[k]:=x[k]+1;
if x[k]>n then k:=k-1
else if k=n then print
else begin k:=k+1;x[k]:=0 end
end ;
end.

例2.n个皇后问题:

program hh;
const n=8;
var i,j,k:integer;
x:array[1..n] of integer;
function place(k:integer):boolean;
var i:integer;
begin
place:=true;
for i:=1 to k-1 do
if (x[i]=x[k]) or (abs(x[i]-x[k])=abs(i-k)) then
place:=false ;
end;
procere print;
var i:integer;
begin
for i:=1 to n do write(x[i]:4);
writeln;
end;
begin
k:=1;x[k]:=0;
while k>0 do
begin
x[k]:=x[k]+1;
while (x[k]<=n) and (not place(k)) do x[k]:=x[k]+1;
if x[k]>n then k:=k-1
else if k=n then print
else begin k:=k+1;x[k]:=0 end
end ;

end.

回溯算法的公式如下:

3.2 回溯算法的递归实现

由于回溯算法用一栈数组实现的,用到栈一般可用递归实现。

上述例1的递归方法实现如下:

program hh;
const n=4;
var i,k:integer;
x:array[1..n] of integer;
st:string[n];
t:string[n];
procere input;
var i:integer;
begin
write('Enter string=');readln(st);
t:=st;
end;
function place(k:integer):boolean;
var i:integer;
begin
place:=true;
for i:=1 to k-1 do
if x[i]=x[k] then
begin place:=false; break end ;
end;
procere print;
var i:integer;
begin
for i:=1 to n do write(t[x[i]]);
writeln;readln;
end;
procere try(k:integer);
var i :integer;
begin
if k=n+1 then begin print;exit end;
for i:=1 to n do
begin
x[k]:=i;
if place(k) then try(k+1)
end
end;
begin
input;
try(1);
end.

例2:n皇后问题的递归算法如下:

程序1:

program hh;
const n=8;
var i,j,k:integer;
x:array[1..n] of integer;
function place(k:integer):boolean;
var i:integer;
begin
place:=true;
for i:=1 to k-1 do
if (x[i]=x[k]) or (abs(x[i]-x[k])=abs(i-k)) then
place:=false ;
end;
procere print;
var i:integer;
begin
for i:=1 to n do write(x[i]:4);
writeln;
end;
procere try(k:integer);
var i:integer;
begin
if k=n+1 then begin print; exit end;
for i:= 1 to n do
begin
x[k]:=i;
if place(k) then try(k+1);
end;
end ;
begin
try(1);
end.

程序2:

说明:当n=8 时有30条对角线分别用了l和r数组控制,

用c数组控制列.当(i,j)点放好皇后后相应的对角线和列都为false.递归程序如下:

program nhh;
const n=8;
var s,i:integer;
a:array[1..n] of byte;
c:array[1..n] of boolean;
l:array[1-n..n-1] of boolean;
r:array[2..2*n] of boolean;
procere output;
var i:integer;
begin
for i:=1 to n do write(a[i]:4);
inc(s);writeln(' total=',s);
end;
procere try(i:integer);
var j:integer;
begin
for j:=1 to n do
begin
if c[j] and l[i-j] and r[i+j] then
begin
a[i]:=j;c[j]:=false;l[i-j]:=false; r[i+j]:=false;
if i<n then try(i+1) else output;
c[j]:=true;l[i-j]:=true;r[i+j]:=true;
end;
end;
end;
begin
for i:=1 to n do c[i]:=true;
for i:=1-n to n-1 do l[i]:=true;
for i:=2 to 2*n do r[i]:=true;
s:=0;try(1);
writeln;
end.练习:

1.找出所有从m个元素中选取n(n<=m)元素的组合。

2.设有A,B,C,D,E 5人从事j1,j2,j3,j4,j5 5项工作每人只能从事一项,它们的

效益表如下:求最佳安排,使效益最高.

3.N个数中找出M个数(从键盘上输入正整数N,M后再输入N个正数),要求从N个数中

找出若干个数,使它们的和为M,把满足条件的数组找出来,并统计组数.

4.地图着色。如下图12个区域用4种颜色着色要求相邻的区域着不同的颜色

5.将任意一正整数(1<n<100)分解成若干正整数的和.

如:4=1+1+1+1

=2+1+1

=2+2

=3+1.

4. 一个递归算法必须包括什么

递归算法包含的两个部分:

1、由其自身定义的与原始问题类似的更小规模的子问题(只有数据规模不同),它使递归过程持续进行,称为一般条件。

2、所描述问题的最简单的情况,它是一个能控制递归过程结束的条件,称为基本条件。(递归出口)

递归的定义:

如果一个对象部分地由它自身组成或按它自己定义,则称它是递归的,所以说递归就是函数/过程/子过程在运行过程中直接或间接调用自身而产生的重入现象。

递归的基本思想:

就是把一个规模大的问题分为若干个规模较小的子问题求解,而每一个子问题又可以分为几个规模更小的子问题。基本上,所有的递归问题都可以用递推公式来表示。

最重要的一点就是假设子问题已经解决了,现在要基于已经解决的子问题来解决当前问题;或者说,必须先解决子问题,再基于子问题来解决当前问题或者可以这么理解:递归解决的是有依赖顺序关系的多个问题。

递归的优缺点:

优点:逻辑清楚,结构清晰,可读性好,代码简洁,效率高(拓展:DFS深度优先搜素,前中后序二叉树遍历)

缺点:函数调用开销大,空间复杂度高,有堆栈溢出的风险

5. 什么是递推法和递归法两者在思想上有何联系

1、递推法:递推算法是一种根据递推关系进行问题求解的方法。通过已知条件,利用特定的递推关系可以得出中间推论,直至得到问题的最终结果。递推算法分为顺推法和逆推法两种。 

2、递归法:在计算机编程中,一个函数在定义或说明中直接或间接调用自身的编程技巧称为递归。通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归做为一种算法在程序设计语言中广泛应用。 

3、两者的联系:在问题求解思想上,递推是从已知条件出发,一步步的递推出未知项,直到问题的解。从思想上讲,递归也是递推的一种,只不过它是对待解问题的递推,直到把一个复杂的问题递推为简单的易解问题。然后再一步步的返回去,从而得到原问题的解。 

(5)递推算法必须包括扩展阅读

相对于递归算法,递推算法免除了数据进出栈的过程,也就是说,不需要函数不断的向边界值靠拢,而直接从边界出发,直到求出函数值。

比如阶乘函数:f(n)=n*f(n-1)  

在f(3)的运算过程中,递归的数据流动过程如下:   f(3){f(i)=f(i-1)*i}-->f(2)-->f(1)-->f(0){f(0)=1}-->f(1)-->f(2)--f(3){f(3)=6}  

而递推如下:   f(0)-->f(1)-->f(2)-->f(3)   由此可见,递推的效率要高一些,在可能的情况下应尽量使用递推。

但是递归作为比较基础的算法,它的作用不能忽视。所以,在把握这两种算法的时候应该特别注意。

阅读全文

与递推算法必须包括相关的资料

热点内容
吃鸡国际体验服为什么服务器繁忙 浏览:92
php中sleep 浏览:488
vr怎么看视频算法 浏览:84
手机app如何申报个人所得税零申报 浏览:692
如何截获手机app连接的ip 浏览:330
冰箱压缩机是否需要电容 浏览:344
python列表每一行数据求和 浏览:274
自己有一台服务器可以玩什么 浏览:656
社会学波普诺pdf 浏览:584
解压做食物的小视频 浏览:758
pdf怎么单独设置文件夹 浏览:474
业务逻辑程序员 浏览:659
addto新建文件夹什么意思 浏览:160
有服务器地址怎么安装软件 浏览:659
安卓如何完全清除数据 浏览:690
安卓安卓证书怎么信任 浏览:53
服务器被攻击如何解决 浏览:221
学霸变成程序员 浏览:882
c语言编译错误fatalerror 浏览:441
ipv4内部服务器地址怎么分配 浏览:464