1. 计算机的随机数是怎么产生的
楼主您好!
在统计学的不同技术中需要使用随机数,比如在从统计总体中抽取有代表性的样本的时候,或者在将实验动物分配到不同的试验组的过程中,或者在进行蒙特卡罗模拟法计算的时候等等。
产生随机数有多种不同的方法。这些方法被称为随机数发生器。随机数最重要的特性是它在产生是后面的那个数与前面的那个数毫无关系。
真正的随机数是使用物理现象产生的:比如掷钱币、骰子、转轮、使用电子元件的噪音、核裂变等等。这样的随机数发生器叫做物理性随机数发生器,它们的缺点是技术要求比较高。
在实际应用中往往使用伪随机数就足够了。这些数列是“似乎”随机的数,实际上它们是通过一个固定的、可以重复的计算方法产生的。它们不真正地随机,因为它们实际上是可以计算出来的,但是它们具有类似于随机数的统计特征。这样的发生器叫做伪随机数发生器。
在真正关键性的应用中,比如在密码术中,人们一般使用真正的随机数。
2. 计算器如何产生随机数
一般计算机的随机数都是伪随机数,以一个真随机数(种子)作为初始条件,然后用一定的算法不停迭代产生随机数,下面介绍两种方法:
一般种子可以以当前的系统时间,这是完全随机的
。
算法1:平方取中法。
1)将种子设为X0,并mod 10000得到4位数
2)将它平方得到一个8位数(不足8位时前面补0)
3)取中间的4位数可得到下一个4位随机数X1
4)重复1-3步,即可产生多个随机数
这个算法的一个主要缺点是最终它会退化成0,不能继续产生随机数。
算法2:线性同余法
1)将种子设为X0,
2)用一个算法X(n+1)=(a*X(n)+b) mod c产生X(n+1)
一般将c取得很大,可产生0到c-1之间的伪随机数
该算法的一个缺点是会出现循环。
3. 如何用计算机求随机数
计算机随机数是用一个随机函数生成随机数,但实际上并非无规律,他其实是将一个数通过某种过程生成另一个数,然后将生成的数再次进行此过程,直到出现循环(一定会出现循环),如:
设一个数a;
给a一个值;
对a进行某过程;//此过程一般很复杂
得到b;
再对b进行此过程;
(依次类推)
....
这样的结果是能够得到出现几率几乎相等的一组数,但他们是有规律的,是可以破解的.
但这只是菜鸟所用的"随机数",真正的计算机随机数可以做到随机,
以上面的解释为例,你可以多设几个过程,根据时间决定使用哪个过程,或者把时间也作为一个参数,还有很多方法也可以做到随机,总之,想破解随机数是不可能的.
我是第一个回答的,如果你觉得够详细,就追加点分吧.
4. 随机数算法是什么
在计算机中并没有一个真正的随机数发生器,但是可以做到使产生的数字重复率很低,这样看起来好象是真正的随机数,实现这一功能的程序叫伪随机数发生器。有关如何产生随机数的理论有许多如果要详细地讨论,需要厚厚的一本书的篇幅。不管用什么方法实现随机数发生器,都必须给它提供一个名为“种子”的初始值。而且这个值最好是随机的,或者至少这个值是伪随机的。“种子”的值通常是用快速计数寄存器或移位寄存器来生成的。下面讲一讲在C语言里所提供的随机数发生器的用法。现在的C编译器都提供了一个基于ANSI标准的伪随机数发生器函数,用来生成随机数。它们就是rand()和srand()函数。这二个函数的工作过程如下:”)首先给srand()提供一个种子,它是一个unsignedint类型,其取值范围从0~65535;2)然后调用rand(),它会根据提供给srand()的种子值返回一个随机数(在0到32767之间)3)根据需要多次调用rand(),从而不间断地得到新的随机数;4)无论什么时候,都可以给srand()提供一个新的种子,从而进一步“随机化”rand()的输出结果。这个过程看起来很简单,问题是如果你每次调用srand()时都提供相同的种子值,那么,你将会得到相同的随机数序列,这时看到的现象是没有随机数,而每一次的数都是一样的了。例如,在以17为种子值调用srand()之后,在首次调用rand()时,得到随机数94。在第二次和第三次调用rand()时将分别得到26602和30017,这些数看上去是很随机的(尽管这只是一个很小的数据点集合),但是,在你再次以17为种子值调用srand()后,在对于rand()的前三次调用中,所得的返回值仍然是在对94,26602,30017,并且此后得到的返回值仍然是在对rand()的第一批调用中所得到的其余的返回值。因此只有再次给srand()提供一个随机的种子值,才能再次得到一个随机数。下面的例子用一种简单而有效的方法来产生一个相当随机的“种子”值----当天的时间值:g#椋睿悖欤酰洌澹Γ欤簦唬螅簦洌椋铮瑁Γ纾簦弧。#椋睿悖欤酰洌澹Γ欤簦唬螅簦洌欤椋猓瑁Γ纾簦弧。#椋睿悖欤酰洌澹Γ欤簦唬螅螅Γ#矗罚唬簦穑澹螅瑁Γ纾簦弧。#椋睿悖欤酰洌澹Γ欤簦唬螅螅Γ#矗罚唬簦椋恚澹猓瑁Γ纾簦弧。觯铮椋洹。恚幔椋睿ǎ觯铮椋洌。。椋睿簟。椋弧。酰睿螅椋纾睿澹洹。椋睿簟。螅澹澹洌郑幔欤弧。螅簦颍酰悖簟。簦椋恚澹狻。簦椋恚澹拢酰妫弧。妫簦椋恚澹ǎΓ幔恚穑唬簦椋恚澹拢酰妫弧。螅澹澹洌郑幔欤剑ǎǎǎǎ酰睿螅椋纾睿澹洹。椋睿簦簦椋恚澹拢酰妫簦椋恚澹Γ幔恚穑唬埃疲疲疲疲。ǎ酰睿螅椋纾睿澹洹。椋睿簦簦椋恚澹拢酰妫恚椋欤欤椋簦恚蕖。ǎ酰睿螅椋纾睿澹洹。椋睿簦簦椋恚澹拢酰妫恚椋欤欤椋簦恚弧。螅颍幔睿洌ǎǎ酰睿螅椋纾睿澹洹。椋睿簦螅澹澹洌郑幔欤弧。妫铮颍ǎ椋剑埃唬椋Γ欤簦唬保埃唬椋。穑颍椋睿簦妫ǎΓ瘢酰铮簦唬ィ叮洌Γ#梗玻唬睿Γ瘢酰铮簦籦egjrand());}上面的程序先是调用_ftime()来检查当前时间yc并把它的值存入结构成员timeBuf.time中wae当前时间的值从1970年1月1日开始以秒计算aeh在调用了_ftime()之后在结构timeBuf的成员millitm中还存入了当前那一秒已经度过的毫秒数,但在DOS中这个数字实际上是以百分之一秒来计算的。然后,把毫秒数和秒数相加,再和毫秒数进行异或运算。当然也可以对这两个结构成员进行更多的计算,以控制se......余下全文>>
5. 真的有能产生完全随机数的算法吗
计算机本来就没办法实现真正的随机,它本来就是按逻辑来运行的,产生的所谓随机数全部都是伪随机,最多只能做到范围足够大,产生规律足够复杂,感觉像是随机而已。