导航:首页 > 源码编译 > 差分四则运算法则证明

差分四则运算法则证明

发布时间:2023-09-02 16:17:41

① 函数极限的四则运算法则是什么

法则:连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。

以下是函数极限的相关介绍:

函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。

问题的关键在于找到符合定义要求的 ,在这一过程中会用到一些不等式技巧,例如放缩法等。1999年的研究生考试试题中,更是直接考察了考生对定义的掌握情况。

在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。

以上资料参考网络——函数极限

② 什么叫差分,差分方程是啥

1、差分又名差分函数或差分运算,差分的结果反映了离散量之间的一种变化,是研究离散数学的一种工具。它将原函数f(x) 映射到f(x+a)-f(x+b) 。差分运算,相应于微分运算,是微积分中重要的一个概念。差分又分为前向差分、向后差分及中心差分三种。

2、差分方程(是一种递推地定义一个序列的方程式:序列的每一项目是定义为前一项的函数。某些简单定义的递推关系式可能会表现出非常复杂的(混沌的)性质,他们属于数学中的非线性分析领域。

(2)差分四则运算法则证明扩展阅读:

差分方程举例:

dy+y*dx=0,y(0)=1 是一个微分方程, x取值[0,1] (注:解为y(x)=e^(-x));

要实现微分方程的离散化,可以把x的区间分割为许多小区间 [0,1/n],[1/n,2/n],...[(n-1)/n,1]

这样上述微分方程可以离散化为:y((k+1)/n)-y(k/n)+y(k/n)*(1/n)=0, k=0,1,2,...,n-1 (n 个离散方程组)

利用y(0)=1的条件,以及上面的差分方程,可以计算出 y(k/n) 的近似值了。

差分方程的性质

1、Δk(xn+yn)=Δkxn+Δkyn。

2、Δk(cxn)=cΔkxn。

3、Δkxn=∑(-1)jCjkXn+k-j。

4、数列的通项为n的无限次可导函数,对任意k>=1,存在η,有 Δkxn=f(k)(η)。

③ 极限四则运算法则证明求解

具体回答如图:


极限四则运算法则的前提是两个极限存在,当有一个极限本身是不存在的,则不能用四则运算法则。

(3)差分四则运算法则证明扩展阅读:

设{xn} 是一个数列,如果对任意ε>0,存在N∈Z*,只要 n 满足 n > N,则对于任意正整数p,都有|xn+p-xn|<ε。

在区间(a-ε,a+ε)之外至多只有N个(有限个)点;所有其他的点xN+1,xN+2,...(无限个)都落在该邻域之内。这两个条件缺一不可,如果一个数列能达到这两个要求,则数列收敛于a;而如果一个数列收敛于a,则这两个条件都能满足

④ 数列极限四则运算的证明例题看不懂请高手指教!

首先要注意,目标是| An•Bn-AB |<ε,但已知的是:limAn=A,limBn=B,所以证明中,一定要用到|An-A|和|Bn-B|。于是通过绝对值不等式| An•Bn-AB | ≤|An-A||Bn|+|A||Bn-B|找到与这两个式子(|An-A|和|Bn-B|)的关系。如果|An-A||Bn|<ε/2,|A||Bn-B|<ε/2,问题就解决了。这两个不等式等价于:|An-A|<ε/(2|Bn|),|Bn-B|<ε/(2|A|),为了清晰起见,分母加了括号。|A|是个常数,已经没有问题,但|Bn|不是常数,于是根据收敛数列的有界性,即:|Bn|<M,找到与n无关的正常数M。于是|An-A||Bn|<|An-A|M<ε/2,后一个不等式等价于:|An-A|<ε/(2M),这里已经假定M是正数,绝对值符号就不写了。这就是ε/(2M)的由来,而不是突然冒出来的。

证明中,快到最后的时候有一句话:由于不等式①②③,当n>N时,我们有|An•Bn-AB|<ε/2+ε/2=ε
其实仔细写来,应该是:
|An•Bn-AB|≤|An-A||Bn|+|A||Bn-B|<|An-A|M+|A||Bn-B|<ε/(2M)•M+|A|•ε/(2|A|)=ε/2+ε/2=ε
第一个“≤”用了①,第二个“<”用了“|Bn|<M ”,第三个“<”用了②③。

另外,如果limAn=A,一般得到|An-A|<ε,肯定没有问题,如果写成|An-A|<ε/2,空侍应该也要理解。证明中就强调“对于任意给定的ε>0,无论怎样小”。这句话一定要充分理解,一个是“任意”,一个是“无论怎样小”。所以一定要理解“ε”是充分的小。因此,如果limAn=A,我们可以得到|An-A|<ε,也可以得到|An-A|<ε/2 或举前者 |An-A|<2ε,甚至如果常数 a>0,我们同样可以得到|An-A|<ε/a 或者 |An-A|<aε。但是,一定要注意 a 与数列的下标 n 无关,是一般函数的话,务必和函数的自变量无关。证明中在引出常数“M”时,特别强调“存在一个与n无关的斗答吵正数M”。

其实如果我们最后得到:|An•Bn-AB|<ε'M+|A|•ε''也是可以的,这里的ε'是由limAn=A得到的,ε''是由limBn=B得到的。但这样一则不漂亮,二则还要说明“ε'M+|A|•ε''”也是充分小。与其都要说明,那就放在中间了,这样最后得到|An•Bn-AB|<ε,又漂亮又可以直接写:“这就是说,An•Bn的极限存在,且等于AB”了。

至于ε要不要找一个正常数与其相乘除,找怎样的正常数,就要看题目了。比如,上面的证明如果改成三个已知极限的乘积,或许就要用到ε/3了。给ε找一个正常数与其相乘除,是解这一类题目的“惯用伎俩”。

阅读全文

与差分四则运算法则证明相关的资料

热点内容
c语言编译错误fatalerror 浏览:439
ipv4内部服务器地址怎么分配 浏览:461
java线程安全的方法 浏览:950
重复命令画梯形 浏览:162
在疫情就是命令 浏览:326
自己搭建一个什么服务器好玩 浏览:251
java基础马士兵 浏览:821
完美世界手游如何查看服务器 浏览:857
光遇安卓与ios什么时候互通 浏览:598
js如何运行时编译 浏览:916
引力app在哪里下载 浏览:609
编写app如何得到钱 浏览:800
吉利汽车软件放哪个文件夹安装 浏览:223
多文件编译c 浏览:542
头顶加密后为什么反而更稀疏 浏览:794
离心机压缩机扬程高 浏览:659
xshell连接linux命令 浏览:5
把多个文件夹的内容合并在一起 浏览:484
基于单片机的浇花系统设计ppt 浏览:685
卷积码编译码及纠错性能验证实验 浏览:355