Ⅰ 遗传算法有哪些方向
遗传算法研究方向主要有以下几个方面:
1. 遗传算法基础理论研究
在遗传算法中,群体规模和遗传算子的控制参数的选取 是必要的试验参数。
遗传算法的收敛也是遗传算法基础理论研究方向之一。
2. 遗传算法的分类系统
分类系统属于基于遗传算法的机器学习中的一类,包括一个简单 的基于串规则的并行生成子系统、规则评价子系统和遗传算法子系统 。
分类系统被人们越来越多地应用在科学、工程和经济领域中,是目 前遗传算法研究中一个十分活跃的领域。
3. 分布并行遗传算法
分布并行遗传算 法的研究表明,只要通过保持多个群体和恰当控制群体间的相互作用 来模拟并行执行过程,即使不使用并行计算机,也能提高算法的执行效 率。
4. 遗传进化算法
模拟自然进化过程可以产生鲁棒的计算机算法--进化算法。其余两种算法是进化规划和进化策略 。
5. 遗传神经网络
包括连接权、网络结构和学习规则的进化。
Ⅱ 遗传算法是什么
遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。
遗传算法(Genetic Algorithms简称GA)是由美国Michigan大学的John Holland教授于20世纪60年代末创建的。它来源于达尔文的进化论和孟德尔、摩根的遗传学理论,通过模拟生物进化的机制来构造人工系统。遗传算法作为一种全局优化方法,提供了一种求解复杂系统优化问题的通用框架,它不依赖于问题的具体领域,对优化函数的要求很低并且对不同种类的问题具有很强的鲁棒性,所以广泛应用于计算机科学、工程技术和社会科学等领域。John Holland教授通过模拟生物进化过程设计了最初的遗传算法,我们称之为标准遗传算法。
标准遗传算法流程如下:
1)初始化遗传算法的群体,包括初始种群的产生以及对个体的编码。
2)计算种群中每个个体的适应度,个体的适应度反映了其优劣程度。
3)通过选择操作选出一些个体,这些个体就是母代个体,用来繁殖子代。
4)选出的母代个体两两配对,按照一定的交叉概率来进行交叉,产生子代个体。
5)按照一定的变异概率,对产生的子代个体进行变异操作。
6)将完成交叉、变异操作的子代个体,替代种群中某些个体,达到更新种群的目的。
7)再次计算种群的适应度,找出当前的最优个体。
8)判断是否满足终止条件,不满足则返回第3)步继续迭代,满足则退出迭代过程,第7)步中得到的当前最优个体,通过解码,就作为本次算法的近似最优解。
具体你可以到网络文库去搜索遗传算法相关的论文,很多的。
你也可以参考网络里对遗传算法的介绍。
Ⅲ 什么是遗传算法
遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术。
对于一个求函数最大值的优化问题(求函数最小值也类同),一般可以描述为下列数学规划模型:
遗传算法式中x为决策
变量,式2-1为目标函数式,式2-2、2-3为约束条件,U是基本空间,R是U的子集。满足约束条件的解X称为可行解,集合R表示所有满足约束条件的解所组成的集合,称为可行解集合。
遗传算法的基本运算过程如下:
a)初始化:设置进化代数计数器t=0,设置最大进化代数T,随机生成M个个体作为初始群体P(0)。
b)个体评价:计算群体P(t)中各个个体的适应度。
c)选择运算:将选择算子作用于群体。选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的。
d)交叉运算:将交叉算子作用于群体。所谓交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作。遗传算法中起核心作用的就是交叉算子。
e)变异运算:将变异算子作用于群体。即是对群体中的个体串的某些基因座上的基因值作变动。
群体P(t)经过选择、交叉、变异运算之后得到下一代群体P(t 1)。
f)终止条件判断:若t=T,则以进化过程中所得到的具有最大适应度个体作为最优解输出,终止计算。
遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(indivial)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。
Ⅳ 遗传算法有哪些比较直观的应用呢
遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。
可用于排班、排课、路径优化、配置优化、生产排程等等优化问题
Ⅳ 能通俗的介绍一下什么是遗传算法吗
遗传算法(Genetic Algorithms or GAs)是基于自然选择和自然遗传机制的搜索算法,它是一种有效的解决最优化问题的方法。遗传算法最早是由美国Michigan大学的John Holland和他的同事及学生提出的。类似于自然界演化的基本法则,“适者生存”是遗传算法的核心机制,同样,“复制(reproce)”、“杂交(crossover)”、“变异(mutation)”等自然界的生物演化规则在遗传算法中都得到类似的体现。
用遗传算法解最优化问题,首先应对可行域中的个体进行编码,然后在可行域中随机挑选指定群体大小的一些个体组成作为进化起点的第一代群体,并计算每个个体的目标函数值,即该个体的适应度。接着就像自然界中一样,利用选择机制从群体中随机挑选个体作为繁殖过程前的个体样本。选择机制保证适应度较高的个体能够保留较多的样本;而适应度较低的个体则保留较少的样本,甚至被淘汰。在接下去的繁殖过程中,遗传算法提供了交叉和变异两种算法对挑选后的样本进行交换和基因突变。交叉算法交换随机挑选的两个个体的某些位,变异算子则直接对一个个体中的随机挑选的某一位进行突变。这样通过选择和繁殖就产生了下一代群体。重复上述选择和繁殖过程,直到结束条件得到满足为止。进化过程最后一代中的最优解就是用遗传算法解最优化问题所得到的最终结果。
与其他算法相比,遗传算法主要有以下四个方面的不同: 遗传算法所面向的对象是参数集的编码,而不是参数集本身; 遗传算法的搜索是基于若干个点,而不是基于一个点; 遗传算法利用目标函数的信息,而不是导数或者其他辅助信息; 遗传算法的转化规则是概率性的,而不是确定性的。
Ⅵ 遗传算法的迭代次数是怎么确定的,与什么有关
1. 遗传算法简介
遗传算法是用于解决最优化问题的一种搜索算法,算法的整体思路是建立在达尔文生物进化论“优胜劣汰”规律的基础上。它将生物学中的基因编码、染色体交叉、基因变异以及自然选择等概念引入最优化问题的求解过程中,通过不断的“种群进化”,最终得到问题的最优解。
2. 遗传算法实现步骤
在讲下面几个基于生物学提出的概念之前,首先我们需要理解为什么需要在最优化问题的求解中引入生物学中的各种概念。
假设我们需要求一个函数的最大值,但这个函数异常复杂以至于无法套用一般化的公式,那么就会想到:如果可以将所有可能的解代入方程,那么函数最大值所对应的那个解就是问题的最优解。但是,对于较复杂的函数来说,其可能的解的个数的数量级是我们所无法想象的。因此,我们只好退而求其次,只代入部分解并在其中找到最优解。那么这样做的核心就在于如何设定算法确定部分解并去逼近函数的最优解或者较好的局部最优解。
遗传算法就是为了解决上述问题而诞生的。假设函数值所对应的所有解是一个容量超级大的种群,而种群中的个体就是一个个解,接下去遗传算法的工作就是让这个种群中的部分个体去不断繁衍,在繁衍的过程中一方面会发生染色体交叉而产生新的个体。另一方面,基因变异也会有概率会发生并产生新的个体。接下去,只需要通过自然选择的方式,淘汰质量差的个体,保留质量好的个体,并且让这个繁衍的过程持续下去,那么最后就有可能进化出最优或者较优的个体。这么看来原来最优化问题居然和遗传变异是相通的,而且大自然早已掌握了这样的机制,这着实令人兴奋。为了将这种机制引入最优化问题并利用计算机求解,我们需要将上述提到的生物学概念转化为计算机能够理解的算法机制。
下面介绍在计算机中这种遗传变异的机制是如何实现的:
基因编码与解码:
在生物学中,交叉与变异能够实现是得益于染色体上的基因,可以想象每个个体都是一串超级长的基因编码,当两个个体发生交叉时,两条基因编码就会发生交换,产生的新基因同时包含父亲和母亲的基因编码。在交叉过程中或者完成后,某些基因点位又会因为各种因素发生突变,由此产生新的基因编码。当然,发生交叉和变异之后的个体并不一定优于原个体,但这给了进化(产生更加优秀的个体)发生的可能。
因此,为了在计算机里实现交叉和变异,就需要对十进制的解进行编码。对于计算机来说其最底层的语言是由二进制0、1构成的,而0、1就能够被用来表示每个基因点位,大量的0、1就能够表示一串基因编码,因此我们可以用二进制对十进制数进行编码,即将十进制的数映射到二进制上。但是我们并不关心如何将十进制转换为二进制的数,因为计算机可以随机生成大量的二进制串,我们只需要将办法将二进制转化为十进制就可以了。
二进制转换为十进制实现方式:
假设,我们需要将二进制映射到以下范围:
首先,将二进制串展开并通过计算式转化为[0,1]范围内的数字:
将[0,1]范围内的数字映射到我们所需要的区间内:
交叉与变异:
在能够用二进制串表示十进制数的基础上,我们需要将交叉与变异引入算法中。假设我们已经获得两条二进制串(基因编码),一条作为父亲,一条作为母亲,那么交叉指的就是用父方一半的二进制编码与母方一半的二进制编码组合成为一条新的二进制串(即新的基因)。变异则指的是在交叉完成产生子代的过程中,二进制串上某个数字发生了变异,由此产生新的二进制串。当然,交叉与变异并不是必然发生的,其需要满足一定的概率条件。一般来说,交叉发生的概率较大,变异发生的概率较小。交叉是为了让算法朝着收敛的方向发展,而变异则是为了让算法有几率跳出某种局部最优解。
自然选择:
在成功将基因编码和解码以及交叉与变异引入算法后,我们已经实现了让算法自动产生部分解并优化的机制。接下去,我们需要解决如何在算法中实现自然选择并将优秀的个体保留下来进而进化出更优秀的个体。
首先我们需要确定个体是否优秀,考虑先将其二进制串转化为十进制数并代入最初定义的目标函数中,将函数值定义为适应度。在这里,假设我们要求的是最大值,则定义函数值越大,则其适应度越大。那是否在每一轮迭代过程中只需要按照适应度对个体进行排序并选出更加优秀的个体就可以了呢?事实上,自然选择的过程中存在一个现象,并没有说优秀的个体一定会被保留,而差劲的个体就一定被会被淘汰。自然选择是一个概率事件,越适应环境则生存下去的概率越高,反之越低。为了遵循这样的思想,我们可以根据之前定义的适应度的大小给定每个个体一定的生存概率,其适应度越高,则在筛选时被保留下来的概率也越高,反之越低。
那么问题就来了,如何定义这种生存概率,一般来说,我们可以将个体适应度与全部个体适应度之和的比率作为生存概率。但我们在定义适应度时使用函数值进行定义的,但函数值是有可能为负的,但概率不能为负。因此,我们需要对函数值进行正数化处理,其处理方式如下:
定义适应度函数:
定义生存概率函数:
注:最后一项之所以加上0.0001是因为不能让某个个体的生存概率变为0,这不符合自然选择中包含的概率思想。
3. 遗传算例
在这里以一个比较简单的函数为例,可以直接判断出函数的最小值为0,最优解为(0,0)
若利用遗传算法进行求解,设定交叉概率为0.8,变异概率为0.005,种群内个体数为2000,十进制数基因编码长度为24,迭代次数为500次。
从遗传算法收敛的动态图中可以发现,遗传算法现实生成了大量的解,并对这些解进行试错,最终收敛到最大值,可以发现遗传算法的结果大致上与最优解无异,结果图如下:
4. 遗传算法优缺点
优点:
1、 通过变异机制避免算法陷入局部最优,搜索能力强
2、 引入自然选择中的概率思想,个体的选择具有随机性
3、 可拓展性强,易于与其他算法进行结合使用
缺点:
1、 遗传算法编程较为复杂,涉及到基因编码与解码
2、 算法内包含的交叉率、变异率等参数的设定需要依靠经验确定
3、 对于初始种群的优劣依赖性较强
Ⅶ 遗传算法,蚁群算法和粒子群算法都是什么算法
遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。
蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。
粒子群算法,也称粒子群优化算法(Particle Swarm Optimization),缩写为 PSO, 是近年来由J. Kennedy和R. C. Eberhart等[1] 开发的一种新的进化算法(Evolutionary Algorithm - EA)。PSO 算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作,它通过追随当前搜索到的最优值来寻找全局最优。