导航:首页 > 源码编译 > 哈希算法不可以用于哪项用途

哈希算法不可以用于哪项用途

发布时间:2023-09-06 09:59:03

① 哈希(hash) - 哈希算法的应用

通过之前的学习,我们已经了解了哈希函数在散列表中的应用,哈希函数就是哈希算法的一个应用。那么在这里给出哈希的定义: 将任意长度的二进制值串映射为固定长度的二进制值串,这个映射规则就是哈希算法,得到的二进制值串就是哈希值
要设计一个好的哈希算法并不容易,它应该满足以下几点要求:

哈希算法的应用非常广泛,在这里就介绍七点应用:

有很多着名的哈希加密算法:MD5、SHA、DES...它们都是通过哈希进行加密的算法。
对于加密的哈希算法来说,有两点十分重要:一是很难根据哈希值反推导出原始数据;二是散列冲突的概率要很小。
当然,哈希算法不可能排除散列冲突的可能,这用数学中的 鸽巢原理 就可以很好解释。以MD5算法来说,得到的哈希值为一个 128 位的二进制数,它的数据容量最多为 2 128 bit,如果超过这个数据量,必然会出现散列冲突。
在加密解密领域没有绝对安全的算法,一般来说,只要解密的计算量极其庞大,我们就可以认为这种加密方法是较为安全的。

假设我们有100万个图片,如果我们在图片中寻找某一个图片是非常耗时的,这是我们就可以使用哈希算法的原理为图片设置唯一标识。比如,我们可以从图片的二进制码串开头取100个字节,从中间取100个字节,从结尾取100个字节,然后将它们合并,并使用哈希算法计算得到一个哈希值,将其作为图片的唯一标识。
使用这个唯一标识判断图片是否在图库中,这可以减少甚多工作量。

在传输消息的过程中,我们担心通信数据被人篡改,这时就可以使用哈希函数进行数据校验。比如BT协议中就使用哈希栓发进行数据校验。

在散列表那一篇中我们就讲过散列函数的应用,相比于其它应用,散列函数对于散列算法冲突的要求低很多(我们可以通过开放寻址法或链表法解决冲突),同时散列函数对于散列算法是否能逆向解密也并不关心。
散列函数比较在意函数的执行效率,至于其它要求,在之前的我们已经讲过,就不再赘述了。

接下来的三个应用主要是在分布式系统中的应用

复杂均衡的算法很多,如何实现一个会话粘滞的负载均衡算法呢?也就是说,我们需要在同一个客户端上,在一次会话中的所有请求都路由到同一个服务器上。

最简单的办法是我们根据客户端的 IP 地址或会话 ID 创建一个映射关系。但是这样很浪费内存,客户端上线下线,服务器扩容等都会导致映射失效,维护成本很大。

借助哈希算法,我们可以很轻松的解决这些问题:对客户端的 IP 地址或会话 ID 计算哈希值,将取得的哈希值域服务器的列表的大小进行取模运算,最后得到的值就是被路由到的服务器的编号。

假设有一个非常大的日志文件,里面记录了用户的搜索关键词,我们想要快速统计出每个关键词被搜索的次数,该怎么做呢?

分析一下,这个问题有两个难点:一是搜索日志很大,没办法放到一台机器的内存中;二是如果用一台机器处理这么大的数据,处理时间会很长。

针对这两个难点,我们可以先对数据进行分片,然后使用多台机器处理,提高处理速度。具体思路:使用 n 台机器并行处理,从日志文件中读出每个搜索关键词,通过哈希函数计算哈希值,然后用 n 取模,最终得到的值就是被分配的机器编号。
这样,相同的关键词被分配到了相同的机器上,不同机器只要记录属于自己那部分的关键词的出现次数,最终合并不同机器上的结果即可。

针对这种海量数据的处理问题,我们都可以采用多机分布式处理。借助这种分片思路,可以突破单机内存、CPU等资源的限制。

处理思路和上面出现的思路类似:对数据进行哈希运算,对机器数取模,最终将存储数据(可能是硬盘存储,或者是缓存分配)分配到不同的机器上。

你可以看一下上图,你会发现之前存储的数据在新的存储规则下全部失效,这种情况是灾难性的。面对这种情况,我们就需要使用一致性哈希算法。

哈希算法是应用非常广泛的算法,你可以回顾上面的七个应用感受一下。

其实在这里我想说的是一个思想: 用优势弥补不足
例如,在计算机中,数据的计算主要依赖 CPU ,数据的存储交换主要依赖内存。两者一起配合才能实现各种功能,而两者在性能上依然无法匹配,这种差距主要是: CPU运算性能对内存的要求远高于现在的内存能提供的性能。
也就是说,CPU运算很快,内存相对较慢,为了抹平这种差距,工程师们想了很多方法。在我看来,散列表的使用就是利用电脑的高计算性能(优势)去弥补内存速度(不足)的不足,你仔细思考散列表的执行过程,就会明白我的意思。

以上就是哈希的全部内容

② 区块链技术中的哈希算法是什么

1.1. 简介

计算机行业从业者对哈希这个词应该非常熟悉,哈希能够实现数据从一个维度向另一个维度的映射,通常使用哈希函数实现这种映射。通常业界使用y = hash(x)的方式进行表示,该哈希函数实现对x进行运算计算出一个哈希值y。
区块链中哈希函数特性:

③ 哈希算法原理和用途

哈希是一种加密算法,也称为散列函数或杂凑函数。哈希函数是一个公开函数,可以将任意长度的消息M映射成为一个长度较短且长度固定的值H(M),称H(M)为哈希值、散列值(Hash Value)、杂凑值或者消息摘要。它是一种单向密码体制,即一个从明文到密文的不可逆映射,只有加密过程,没有解密过程。

(3)哈希算法不可以用于哪项用途扩展阅读

Hash算法的特点:

压缩:对于任意大小的输入x,Hash值的长度很小,在实际应用中,函数H产生的Hash值其长度是固定的。

易计算:对于任意给定的消息,计算其Hash值比较容易。

单向性:对于给定的Hash值,要找到使得在计算上是不可行的,即求Hash的逆很困难。在给定某个哈希函数H和哈希值H(M)的情况下,得出M在计算上是不可行的。即从哈希输出无法倒推输入的原始数值。这是哈希函数安全性的基础。

抗碰撞性:理想的Hash函数是无碰撞的,但在实际算法的.设计中很难做到这一点。

有两种抗碰撞性:一种是弱抗碰撞性,即对于给定的消息,要发现另一个消息,满足在计算上是不可行的;另一种是强抗碰撞性,即对于任意一对不同的消息,使得在计算上也是不可行的。

高灵敏性:这是从比特位角度出发的,指的是1比特位的输入变化会造成1/2的比特位发生变化。消息M的任何改变都会导致哈希值H(M)发生改变。即如果输入有微小不同,哈希运算后的输出一定不同。

④ hash算法的作用是什么

身份验证
数字签名

⑤ hash算法的有哪几种,优缺点,使用场景

Hash算法在信息安全方面的应用主要体现在以下的3个方面: 1)文件校验 我们比较熟悉的校验算法有奇偶校验和CRC校验,这2种校验并没有抗数据篡改的能力,它们一定程度上能检测并纠正数据传输中的信道误码,但却不能防止对数据的恶意破坏。

⑥ 什么是哈希算法

就是空间映射函数,例如,全体的长整数的取值作为一个取值空间,映射到全部的字节整数的取值的空间,这个映射函数就是HASH函数。通常这种映射函数是从一个非常大的取值空间映射到一个非常小的取值空间,由于不是一对一的映射,HASH函数转换后不可逆,即不可能通过逆操作和HASH值还原出原始的值,受到计算能力限制(注意,不是逻辑上不可能,前面的不可能是逻辑上的)而且也无法还原出所有可能的全部原始值。HASH函数运用在字典表等需要快速查找的数据结构中,他的计算复杂度几乎是O(1),不会随着数据量增加而增加。另外一种用途就是文件签名,文件内容很多,将文件内容通过HASH函数处理后得到一个HASH值,验证这个文件是否被修改过,只需要把文件内容用同样的HASH函数处理后得到HASH值再比对和文件一起传送的HASH值即可,如不公开HASH算法,那么信道是无法篡改文件内容的时候篡改文件HASH值,一般应用的时候,HASH算法是公开的,这时候会用一个非对称加密算法加密一下这个HASH值,这样即便能够计算HASH值,但没有加密密钥依然无法篡改加密后HASH值。这种算法用途很广泛,用在电子签名中。HASH算法也可进行破解,这种破解不是传统意义上的解密,而是按照已有的HASH值构造出能够计算出相同HASH值的其他原文,从而妨碍原文的不可篡改性的验证,俗称找碰撞。这种碰撞对现有的电子签名危害并不严重,主要是要能够构造出有意义的原文才有价值,否则就是构造了一个完全不可识别的原文罢了,接收系统要么无法处理报错,要么人工处理的时候发现完全不可读。理论上我们终于找到了在可计算时间内发现碰撞的算法,推算了HASH算法的逆操作的时间复杂度大概的范围。HASH算法的另外一个很广泛的用途,就是很多程序员都会使用的在数据库中保存用户密码的算法,通常不会直接保存用户密码(这样DBA就能看到用户密码啦,好危险啊),而是保存密码的HASH值,验证的时候,用相同的HASH函数计算用户输入的密码得到计算HASH值然后比对数据库中存储的HASH值是否一致,从而完成验证。由于用户的密码的一样的可能性是很高的,防止DBA猜测用户密码,我们还会用一种俗称“撒盐”的过程,就是计算密码的HASH值之前,把密码和另外一个会比较发散的数据拼接,通常我们会用用户创建时间的毫秒部分。这样计算的HASH值不大会都是一样的,会很发散。最后,作为一个老程序员,我会把用户的HASH值保存好,然后把我自己密码的HASH值保存到数据库里面,然后用我自己的密码和其他用户的用户名去登录,然后再改回来解决我看不到用户密码而又要“偷窥”用户的需要。最大的好处是,数据库泄露后,得到用户数据库的黑客看着一大堆HASH值会翻白眼。

⑦ 哈希技术的用途包括数据脱敏吗

不包括。
哈希算法(Hash )又称摘要算法(Digest ),它的作用是:对任意一组输入数据进行计算,得到一个固定长度的输出摘要。哈希算法的目的:为了验证原始数据是否被篡改。
Hash,一般翻译做散列、杂凑,或音译为哈希,是把任意长度的输入(又叫做预映射pre-image)通过散列算法变换成固定长度的输出,该输出就是散列值。

阅读全文

与哈希算法不可以用于哪项用途相关的资料

热点内容
安卓java调用python 浏览:395
java标准时间 浏览:137
华为服务器湖北渠道商云主机 浏览:30
韩式面部护理解压视频 浏览:301
pdf换成jpg图片 浏览:897
dh加密算法 浏览:107
安卓手机如何隐藏微信信息提示 浏览:632
nodejs解压缩 浏览:262
直流双转子压缩机 浏览:952
pythonxmlstring 浏览:822
用私钥加密之后可以用公钥解密 浏览:788
ug如何启动服务器 浏览:444
csgo防抖动命令 浏览:960
如何弄到手机app页面的源码 浏览:441
androidwindows7破解版 浏览:363
解压视频动画怎么拍 浏览:748
连涨启动源码 浏览:163
小奔运动app网络异常怎么回事 浏览:449
php开启压缩 浏览:305
服务器主机如何设置启动 浏览:284