㈠ 数据挖掘的方法有哪些
数据挖掘的的方法主要有以下几点:
1.分类挖掘方法。分类挖掘方法主要利用决策树进行分类,是一种高效且在数据挖掘方法中占有重要地位的挖掘方法。为了对数据进行较为准确的测试并据此分类,我们采用决策树算法,而决策树中比较典型的几种方法为:ID3算法,此方法具有较强的实用性,适用于大规模数据处理;KNN算法,此方法算量较大,适用于分别类别的数据处理。
2..聚类分析挖掘方法。聚类分析挖掘方法主要应用于样品与指标分类研究领域,是一种典型的统计方法,广泛应用于商业领域。此聚类分析方法根据适用对象不同又可分为四种分析挖掘方法:基于网格的聚类分析方法、基于分层的聚类方法、基于密度的聚类挖掘方法和基于模型的聚类方法。
3.预测方法。预测方法主要用于对知识的预测以及对连续数值型数据的挖掘,传统的预测方法主要分为:时间序列方法、回归模型分析法、灰色系统模型分析。而现在预测方法主要采用神经网络与支持向量机算法,进行数据分析计算,同时可预测未来数据的走向趋势。
关于大数据挖掘工程师的课程推荐CDA数据分析师的相关课程,课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生具备从数据治理根源出发的思维,通过数字化工作方法来探查业务问题,通过近因分析、宏观根因分析等手段,再选择业务流程优化工具还是算法工具,而非“遇到问题调算法包”点击预约免费试听课。
㈡ 什么是数据挖掘,或数据挖掘的过程是什么
1.1 数据挖掘的兴起
1.1.1 数据丰富与知识匮乏
整个知识发现过程是由若干重要步骤组成(数据挖掘只是其中一个重要步骤):
1)数据清洗:清除数据噪声和与挖掘主题明显无关的数据
2)数据集成:将来自多数据源中的相关数据组合到一起
3)数据转换:将数据转换为易于进行数据挖掘的数据存储形式
4)数据挖掘:它是知识挖掘的一个重要步骤,其作用是利用智能方法挖掘数据模式或规律知识
5)模式评估:其作用是根据一定评估标准从挖掘结果筛选出有意义的模式知识
6)知识表示:其作用是利用可视化和知识表达技术,向用户展示所挖掘出的相关知识
1.1.4 数据挖掘解决的商业问题(案例)
客户行为分析
客户流失分析
交叉销售
欺诈检测
风险管理
客户细分
广告定位
市场和趋势分析
㈢ 一分钟了解互联网数据挖掘流程
一分钟了解互联网数据挖掘流程
1、爬虫抓取网络数据
真实的数据挖掘项目,一定是从获取数据开始的,除了通过一些渠道购买或者下载专业数据外,常常需要大家自己动手爬互联网数据,这个时候,爬虫就显得格外重要了。
Nutch爬虫的主要作用是从网络上抓取网页数据并建立索引。我们只需指定网站的顶级网址,如taobao.com,爬虫可以自动探测出页面内容里新的网址,从而进一步抓取链接网页数据。nutch支持把抓取的数据转化成文本,如(PDF、WORD、EXCEL、HTML、XML等形式)转换成纯文字字符。
Nutch与Hadoop集成,可以将下载的数据保存到hdfs,用于后续离线分析。使用步骤为:
向hdfs中存入待抓取的网站url
$ hadoop fs -put urldir urldir
注:
第一个urldir为本地文件夹,存放了url数据文件,每行一个url地址
第二个urldir为hdfs的存储路径。
启动nutch,在NUTCH_HONE目录下执行以下命令
$ bin/nutch crawlurldir –dir crawl -depth 3 –topN 10
命令成功执行后,会在hdfs中生成crawl目录。
2、MapRece预处理数据
对于下载的原始文本文档,无法直接进行处理,需要对文本内容进行预处理,包括文档切分、文本分词、去停用词(包括标点、数字、单字和其它一些无意义的词)、文本特征提取、词频统计、文本向量化等操作。
常用的文本预处理算法是TF-IDF,其主要思想是,如果某个词或短语在一篇文章中出现的频率高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来做分类。
输入原始文本内容:
Againit seems that cocoa delivered……
执行TF-IDF预处理:
hadoop jar $JAR ……
输出文本向量:
9219:0.246 453:0.098 10322:0.21 11947:0.272 ……
每一列是词及其权重,使用冒号分隔,例如“9219:0.246”表示编号为9219的词,对应原始单词为“Again”,其权重值为0.246。
3、Mahout数据挖掘
预处理后的数据就可以用来做数据挖掘。Mahout是一个很强大的数据挖掘工具,是分布式机器学习算法的集合,包括:协同过滤、分类、聚类等。
以LDA算法为例,它可以将文档集中每篇文档的主题按照概率分布的形式给出。它是一种无监督学习算法,在训练时不需要手工标注主题,需要的仅仅是指定主题的数量K。此外LDA的另一个优点则是,对于每一个主题均可找出一些词语来描述它。
输入预处理后的数据:
9219:0.246 453:0.098 ……
执行LDA挖掘算法:
mahout cvb –k 20……
输出挖掘结果:
topic1 {computer,technology,system,internet,machine}
topic2 {play,film,movie,star,director,proction,stage}
我们可以获知用户的偏好是哪些主题,这些主题是由一些关键词组成。
4、Sqoop导出到关系数据库
在某些场景下,需要把数据挖掘的结果导出到关系数据库,用于及时响应外部应用查询。
sqoop是一个用来把hadoop和关系型数据库中的数据相互转移的工具,可以将一个关系型数据库(例如:MySQL ,Oracle 等)中的数据导入到hadoop的hdfs中,也可以将hdfs的数据导出到关系型数据库中:
sqoop export –connect jdbc:mysql://localhost:3306/zxtest –username root–password root –table result_test –export-dir /user/mr/lda/out
export操作实现把hdfs目录/user/mr/lda/out下数据导出到mysql的result_test表。
㈣ 数据挖掘的方法及实施
数据挖掘的方法及实施
作为一门处理数据的新兴技术,数据挖掘有许多的新特征。首先,数据挖掘面对的是海量的数据,这也是数据挖掘产生的原因。其次,数据可能是不完全的、有噪声的、随机的,有复杂的数据结构,维数大。最后,数据挖掘是许多学科的交叉,运用了统计学,计算机,数学等学科的技术。以下是常见和应用最广泛的算法和模型:
传统统计方法:①抽样技术:我们面对的是大量的数据,对所有的数据进行分析是不可能的也是没有必要的,就要在理论的指导下进行合理的抽样。②多元统计分析:因子分析,聚类分析等。③统计预测方法,如回归分析,时间序列分析等。
可视化技术:用图表等方式把数据特征用直观地表述出来,如直方图等,这其中运用的许多描述统计的方法。可视化技术面对的一个难题是高维数据的可视化。
决策树:利用一系列规则划分,建立树状图,可用于分类和预测。常用的算法有CART、CHAID、ID3、C4.5、C5.0等。
神经网络:模拟人的神经元功能,经过输入层,隐藏层,输出层等,对数据进行调整,计算,最后得到结果,用于分类和回归。
遗传算法:基于自然进化理论,模拟基因联合、突变、选择等过程的一种优化技术。
关联规则挖掘算法:关联规则是描述数据之间存在关系的规则,形式为“A1∧A2∧…An→B1∧B2∧…Bn”。一般分为两个步骤:①求出大数据项集。②用大数据项集产生关联规则。
除了上述的常用方法外,还有粗集方法,模糊集合方法,Bayesian Belief Netords,最邻近算法(k-nearest neighbors method(KNN))等。
数据挖掘的实施流程
前面我们讨论了数据挖掘的定义,功能和方法,现在关键的问题是如何实施,其一般的数据挖掘流程如下:
问题理解和提出→数据准备→数据整理→建立模型→评价和解释
问题理解和提出:在开始数据挖掘之前最基础的就是理解数据和实际的业务问题,在这个基础之上提出问题,对目标有明确的定义。
数据准备:获取原始的数据,并从中抽取一定数量的子集,建立数据挖掘库,其中一个问题是如果企业原来的数据仓库满足数据挖掘的要求,就可以将数据仓库作为数据挖掘库。
数据整理:由于数据可能是不完全的、有噪声的、随机的,有复杂的数掘结构,就要对数据进行初步的整理,清洗不完全的数据,做初步的描述分析,选择与数据挖掘有关的变量,或者转变变量。
建立模型:根据数据挖掘的目标和数据的特征,选择合适的模型。
评价和解释:对数据挖掘的结果进行评价,选择最优的模型,作出评价,运用于实际问题,并且要和专业知识结合对结果进行解释。
以上的流程不是一次完成的,可能其中某些步骤或者全部要反复进行。