导航:首页 > 源码编译 > 直接选择排序算法复杂

直接选择排序算法复杂

发布时间:2023-09-10 05:23:26

❶ 选择排序法复杂度

稳定性比较
插入排序、冒泡排序、二叉树排序、二路归并排序及其他线形排序是稳定的。
选择排序、希尔排序、快速排序、堆排序是不稳定的。

时间复杂性比较
插入排序、冒泡排序最优为O(n),最坏为O(n^2),平均O(n^2);
快速排序最优为O(nlogn),最坏为O(n^2),平均O(nlogn);
堆排序最优为O(nlogn),最坏为O(nlogn),平均O(nlogn);
线形排序的时间复杂性为O(n)。

辅助空间的比较
线形排序、归并排序的辅助空间为O(n),快速排序的辅助空间为O(logn),其它排序的辅助空间为O(1)。

其它比较
插入、冒泡排序的速度较慢,但参加排序的序列局部或整体有序时,这种排序能达到较快的速度。
反而在这种情况下,快速排序反而慢了。当n较小时,对稳定性不作要求时宜用选择排序,对稳定性有要求时宜用插入或冒泡排序。
若待排序的记录的关键字在一个明显有限范围内时,且空间允许时用桶排序。
当n较大时,关键字符素比较随机,对稳定性没要求宜用快速排序。
当n较大时,关键字符素可能出现本身是有序的,对稳定性有要求时,空间允许的情况下宜用归并排序。
当n较大时,关键字符素可能出现本身是有序的,对稳定性没有要求时宜用堆排序。

算法描述太长了。
binary seach 二分查找啊。

6 层排序 乘3加1 Shell Sort Times 3 plus 1

7 层排序 乘4 Shell Sort Times 4
层排序? 看名字是 希尔排序吧。

还有上面的名字也翻译错了。。。
这些算法都很容易搜到的。

给你个网址吧:

http://www.nocow.cn/index.php/%E6%8E%92%E5%BA%8F%E7%AE%97%E6%B3%95

不过是用PASCAL语言描述的,部分C++语言描述。

// 直接插入排序
void insertionSort( int *array )
{
int i, j;
int key;

for( i = 1; i < size; ++i )
{
key = array[i];
j = i - 1;
while( j >= 0 && array[j] > key )
{
array[j+1] = array[j];
--j;
}
array[j+1] = key;
}
}

// 折半插入排序
void binary_insertiont_sort( int *array )
{
for( int i = 1; i < size; ++i )
{
int key = array[i];
int low = 0;
int high = i - 1;
while( low <= high )
{
int mid = ( low + high ) / 2;
if( array[mid] > key )
high = mid - 1;
else
low = mid + 1;
}
for( int j = i - 1; j > high + 1; --j )
array[j+1] = array[j];
array[j] = key;
}
}

// 选择排序
void selectSort( int *array )
{
int i, j, k;

for( i = 0; i < size - 1; ++i )
{
k = i;
for( j = i + 1; j < size; ++j )
if( array[k] > array[j] )
k = j;
if( k != i )
{
j = array[k];
array[k] = array[i];
array[i] = j;
}
}
}

// 二分查找法
void binarySeach( int *array, int key )
{
int low = 0;
int high = n - 1; // n是array的长度
int flag = 0;
while( low <= high )
{
int mid = ( low + high ) / 2;
if( array[mid] > key )
high = mid - 1;
else if( array[mid] < key )
low = mid + 1;
else
{
printf( "%d\n", mid+1 );
flag = 1;
break;
}
}
if( !flag )
printf( "NOFOUND!\n" );
}

其他的还没写。。

❷ 求各种查找和排序的时间复杂度

冒泡排序是稳定的,算法时间复杂度是O(n ^2)。

2.2 选择排序(Selection Sort)

选择排序的基本思想是对待排序的记录序列进行n-1遍的处理,第i遍处理是将L[i..n]中最小者与L[i]交换位置。这样,经过i遍处理之后,前i个记录的位置已经是正确的了。

选择排序是不稳定的,算法复杂度是O(n ^2 )。

2.3 插入排序 (Insertion Sort)

插入排序的基本思想是,经过i-1遍处理后,L[1..i-1]己排好序。第i遍处理仅将L[i]插入L[1..i-1]的适当位置,使得L[1..i] 又是排好序的序列。要达到这个目的,我们可以用顺序比较的方法。首先比较L[i]和L[i-1],如果L[i-1]≤ L[i],则L[1..i]已排好序,第i遍处理就结束了;否则交换L[i]与L[i-1]的位置,继续比较L[i-1]和L[i-2],直到找到某一个位置j(1≤j≤i-1),使得L[j] ≤L[j+1]时为止。图1演示了对4个元素进行插入排序的过程,共需要(a),(b),(c)三次插入。

直接插入排序是稳定的,算法时间复杂度是O(n ^2) 。

2.4 堆排序

堆排序是一种树形选择排序,在排序过程中,将A[n]看成是完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系来选择最小的元素。

堆排序是不稳定的,算法时间复杂度O(nlog n)。

2.5 归并排序

设有两个有序(升序)序列存储在同一数组中相邻的位置上,不妨设为A[l..m],A[m+1..h],将它们归并为一个有序数列,并存储在A[l..h]。

其时间复杂度无论是在最好情况下还是在最坏情况下均是O(nlog2n)。

2.6 快速排序

快速排序是对冒泡排序的一种本质改进。它的基本思想是通过一趟扫描后,使得排序序列的长度能大幅度地减少。在冒泡排序中,一次扫描只能确保最大数值的数移到正确位置,而待排序序列的长度可能只减少1。快速排序通过一趟扫描,就能确保某个数(以它为基准点吧)的左边各判山数都比它小,右边晌冲圆各数都比它大。然后又用同样的方法处理它左右两边的数,直到基准点的左右只有一个元素为止。

快速排序是不稳定的,最理宴塌想情况算法时间复杂度O(nlog2n),最坏O(n ^2)。

2.7 希尔排序

在直接插入排序算法中,每次插入一个数,使有序序列只增加1个节点,并且对插入下一个数没有提供任何帮助。如果比较相隔较远距离(称为 增量)的数,使得数移动时能跨过多个元素,则进行一次比较就可能消除多个元素交换。D.L.shell于1959年在以他名字命名的排序算法中实现了这一思想。算法先将要排序的一组数按某个增量d分成若干组,每组中记录的下标相差d.对每组中全部元素进行排序,然后再用一个较小的增量对它进行,在每组中再进行排序。当增量减到1时,整个要排序的数被分成一组,排序完成。

希尔排序是不稳定的,其时间复杂度为O(n ^2)。

排序类别
时间复杂度
空间复杂度
稳定

1
插入排序
O(n2)
1


2
希尔排序
O(n2)
1
×

3
冒泡排序
O(n2)
1


4
选择排序
O(n2)
1
×

5
快速排序
O(Nlogn)
O(logn)
×

6
堆排序
O(Nlogn)
1
×

7
归并排序
O(Nlogn)
O(n)

❸ 排序算法的时间复杂度

所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。排序算法,就是如何使得记录按照要求排列的方法。排序算法在很多领域得到相当地重视,尤其是在大量数据的处理方面。

一个优秀的算法可以节省大量的资源。在各个领域中考虑到数据的各种限制和规范,要得到一个符合实际的优秀算法,得经过大量的推理和分析。

空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度,记做S(n)=O(f(n))。比如直接插入排序的时间复杂度是O(n^2),空间复杂度是O(1) 。

而一般的递归算法就要有O(n)的空间复杂度了,因为每次递归都要存储返回信息。一个算法的优劣主要从算法的执行时间和所需要占用的存储空间两个方面衡量。

(3)直接选择排序算法复杂扩展阅读:

排序算法经过了很长时间的演变,产生了很多种不同的方法。对于初学者来说,对它们进行整理便于理解记忆显得很重要。每种算法都有它特定的使用场合,很难通用。因此,我们很有必要对所有常见的排序算法进行归纳。

排序大的分类可以分为两种:内排序和外排序。在排序过程中,全部记录存放在内存,则称为内排序,如果排序过程中需要使用外存,则称为外排序。下面讲的排序都是属于内排序。

内排序有可以分为以下几类:

(1)、插入排序:直接插入排序、二分法插入排序、希尔排序。

(2)、选择排序:直接选择排序、堆排序。

(3)、交换排序:冒泡排序、快速排序。

(4)、归并排序

(5)、基数排序

❹ 常见排序算法以及对应的时间复杂度和空间复杂度

排序 :将杂乱无章的数据,按照一定的方法进行排列的过程叫做排序。

排序大的分类可分为 内排序 外排序 ,不需要访问外存就能进行排序的叫做内排序。

排序也可以分为 稳定排序 不稳定排序

稳定排序 :假设在待排序的文件中,存在两个或两个以上的记录具有相同的关键字,在用某种排序法排序后,若这些相同关键字的元素的相对次序仍然不变,则这种排序方法是稳定的。即;若 a[i]=a[j] , a[i] a[j] 之前,经过排序后 a[i] 依然在 a[j] 之前。冒泡排序、直接插入排序、二分插入排序、归并排序,基数排序都是稳定排序。
不稳定排序 :直接选择排序、堆排序、快速排序、希尔排序,猴子排序。

以升序为例,比较相邻的元素,如果第一个比第二个大,则交换他们两个。如果两个元素一样大,则继续比较下一对。所以冒泡排序是一种稳定排序。

选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一趟扫描,将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素,此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分。快速排序是不稳定排序。

将序列分为两个部分{{有序序列},{无序}},每次处理就是将无序数列的第一个元素与有序数列的元素从后往前逐个进行比较,找出插入位置,将该元素插入到有序数列的合适位置中。如果碰到相等的元素,就会把它插入到想等元素后面,顺序不会改变,所以直接插入排序是稳定排序。

在直接插入排序的基础上,对有序序列进行划分。例如:序列为 {{a[0]......a[i-1]},a[i]} 其中 {a[0]......a[i-1]} 为有序序列,取 a[(i-1)/2] ,将其与 a[i] 比较,即可确定 a[i] 的范围 (a[0]...a[(i-1)/2] 或者 a[(i-1)/2]...a[i-1]) ,然后继续在已确定的范围内进行二分。范围依次缩小为: 1/2、1/4、1/8、1/16...... 可快速确定a[i]应该插入的位置。二分插入排序也是稳定排序。

将整个序列分割成若干个小的子序列,每个子序列内分别进行插入排序。一般情况下步长取n/2。直到最后一次步长为1,即所有元素在一个组中进行排序。由于希尔排序是先将整个序列划分为多个子序列进行排序,相同的元素顺序在这个过程中顺序可能会被打乱,所以希尔排序是不稳定排序。

从待排序的数据元素中,选出最小或最大的元素与序列第一个数交换。直到所有数据排完。直接选择排序是不稳定排序。例如: {3,3,1} ,第一次排序就将1和第一个3交换,想等元素的顺序改变了。

以n=10的一个数组49, 38, 65, 97, 26, 13, 27, 49, 55, 4为例

堆排序是一种树形选择排序,是对直接选择排序的有效改进。
最大堆:每个节点的值都大于等于它的孩子节点。
最小堆:每个节点的值都小于等于它的孩子节点。
最大堆第0个数据是最大数,最小堆第0个数据是最小数。
堆排序是不稳定排序

思想

归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
如何将两个有序序列合并?(升序)
{a[0]......a[i-1]},{b[0]......b[j-1]}
b[0]<a[0] ,取 b[0] 放入数组 c 中,然后继续比较数组 a b 中的第一个元素,直到数组 a b 中最后一对元素比较完成。

思想

将数组分成二组 a , b 如果这二组组内的数据都是有序的,那么就可以按照上述方法对这二组数据进行排序。如果这二组数据是无序的?
可以将 a , b 组各自再分成二组。递归操作,直到每个小组只有一个数据,每个小组只有一个元素所以我们可以认为它已经是有序序列,然后进行合并。
先分解后合并。
归并排序是稳定排序

将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。从最低位起从0-9依次扫描序列,一边扫描一边将扫描到的数据加到新的序列中,得到一个序列。然后比较高一位,重复上述操作,直到最高位排序完成。数列就变成一个有序序列。基数排序是稳定排序。

以全是二位数的序列举例

无限猴子定理 :指一只猴子随机在打字机键盘上按键,最后必然可以打出法国国家图书馆的每本图书。

时间复杂度最低1次,最高可执行到世界的尽头。。。

❺ 八大排序算法与复杂度

  在处理大批量数据时,有序化的数据可以在很大程度上提高算法效率。
直接插入排序  先总结一下数据结构的八大排序,分别是插入排序中的 直接插入排序 希尔排序 ,交换排序中的 起泡排序 快速排序 ,选择排序中的 直接选择排序 堆排序 ,以及 归并排序 基数排序
  如何评价排序的优劣呢?除了正确,易读和容错(自动检错,报错并通过与用户对话来纠错)以外,性能是一个重要指标。

  算法性能是指运行一个算法所需要的时间长短和内存多少,他们分别称为 时间复杂性 空间复杂性

  1)有些计算机需要用户提供程序运行时间的上限。一旦达到这个上限,程序将被强制结束。
  2)一个正在开发的程序可能需要一个令人满意的实时响应。
  选择什么样的时间单位(程序步)来度量算法运行时间呢?对少量的输入,算法瞬间就运行完了。所以对算法性能的评价总是对大的输入量而言的。
  假设输入量是n,算法运行时间是n的函数T(n),我们研究当很大时,T(n)是什么级别。这里就用到了 大O记法 :如果存在正常数c和n 0 ,使得当n≥n 0 时,T(n)≤ c*f(n),则记为T(n)=O(f(n))。

  算法所需空间包括固定部分和变动部分。固定部分与输入量或规模无关,主要包括程序码空间和常量,变量和对象的定长所占的空间。变动部分与输出量有关,主要包括递归栈空间和中间处理所需空间。如果用P表示算法,S(P)表示空间需求,那么S(P)=c(固定部分)+S p (变动部分)。算法的空间复杂性分析重点是变动部分S p

  此外,如果一种排序实施前后,关键码相同的任意两个数据元素其前后次序没有发生变化,那么这个排序方法就被称作是 稳定的 ,否则就是 不稳定的

原理:从待排序集的第1个数据元素开始,依次选择数据元素,与有序子集的数据元素依次从后往前进行比较,选择插入位置。

稳定性: 稳定

原理:以增量为步长划分子序列,即同一子序列的数据元素,其下标步长等于增量。对每个子序列实施直接插入排序。不断缩小增量,当增量为1时,所有数组元素都在一个子序列中,成为有序集。
   通俗来讲,增量即为数组中元素下表的差值,假设步长为4,及a[0],a[4],a[8]…为一个子序列。实行直接插入排序后,将增量缩小为一半,直至增量缩小为1。

稳定性: 不稳定

原理:把数组分为左右两个半区,左半区为有序子集,右半区为无序子集。开始时,左半区为空。在无序子集中,从后往前,两两相邻元素比较,逆序则交换。最后交换的位置成为有序子集的上界。直到一趟起泡排序中没有发生交换,排序停止。

稳定性: 稳定

原理:取无序子集中的第一个数据元素作为基准,将无序子集分为左右两个半区,左半区不大于基准,右半区不小于基准;然后对左右半区重复上述操作,知道各半区元素个数为1.

稳定性: 不稳定 ,主要是划分算法Partition造成的。

原理:将数组分为左右两个半区,左半区为有序子集,右半区为无序子集。开始时,有序子集为空。在无序子集中,选出最小元素,与无序子集第一个元素交换,再将第一个元素并入有序子集中。重复上述操作。

稳定性: 稳定

原理:
1)将数组分为左右两个半区,左半区为有序子集,右半区为无序子集。开始时,有序子集为空。
2)将无序子集创建为大根堆。
3)将堆化为无序子集首位数据元素交换,将交换后的尾元素并入有序子集,然后把缩小的无序子集调整为大根堆。
4)重复步骤3)n-2次。

稳定性: 不稳定

原理:
1) 归并 (一般指二路归并):将两个有序表合成一个新的有序表。包含关键码的原始数组ini分为左右两个有序分区(归并段)[s,m]和[m+1,e],将他们按序归并,一个归并段存储到一个辅助数组(merge)中。
2) 迭代归并 :包含关键码的原始数组ini按长度len划分为几个连续的归并段,每一个归并段都有序,用二路归并将相邻归并段合成一个长度为2len的归并段并存入辅助数组,这个过程称为 一趟归并 。重复上述步骤。
 ①剩下一个长度为len的归并段和一个长度不足len的归并段,继续调用二路归并。
 ②只剩下一个长度为len或不足len的归并段,直接移至辅助数组merge。

稳定性: 稳定

原理:采用“分配”和“收集”技术,从关键码的低位到高位进行比较。有十个队列作为分配用的”箱子“,编号0~9。遵照先进先出原则,从个位开始排序,到十位,百位,以此类推。

稳定性: 稳定

❻ 各种排序算法的总结和比较

排序算法是《数据结构与算法》中最基本的算法之一。

排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。用一张图概括:

点击以下图片查看大图:

关于时间复杂度

平方阶 (O(n2)) 排序 各类简单排序:直接插入、直接选择和冒泡排序。

线性对数阶 (O(nlog2n)) 排序 快速排序、堆排序和归并排序;

O(n1+§)) 排序,§ 是介于 0 和 1 之间的常数。 希尔排序

线性阶 (O(n)) 排序 基数排序,此外还有桶、箱排序。

关于稳定性

稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序。

不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序。

名词解释:

n:数据规模 k:"桶"的个数 In-place:占用常数内存,不占用额外内存 Out-place:占用额外内存 稳定性:排序后 2 个相等键值的顺序和排序之前它们的顺序相同

包含以下内容:

1、冒泡排序 2、选择排序 3、插入排序 4、希尔排序 5、归并排序 6、快速排序 7、堆排序 8、计数排序 9、桶排序 10、基数排序

排序算法包含的相关内容具体如下:

冒泡排序算法

冒泡排序(Bubble Sort)也是一种简单直观的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢"浮"到数列的顶端。

选择排序算法

选择排序是一种简单直观的排序算法,无论什么数据进去都是 O(n?) 的时间复杂度。所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间。

插入排序算法

插入排序的代码实现虽然没有冒泡排序和选择排序那么简单粗暴,但它的原理应该是最容易理解的了,因为只要打过扑克牌的人都应该能够秒懂。插入排序是一种最简单直观的排序算法,它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

希尔排序算法

希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。但希尔排序是非稳定排序算法。

归并排序算法

归并排序(Merge sort)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

快速排序算法

快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要 Ο(nlogn) 次比较。在最坏状况下则需要 Ο(n2) 次比较,但这种状况并不常见。事实上,快速排序通常明显比其他 Ο(nlogn) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。

堆排序算法

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序可以说是一种利用堆的概念来排序的选择排序。

计数排序算法

计数排序的核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

桶排序算法

桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。

基数排序算法

基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数。

❼ 直接选择排序算法在最好情况下的时间复杂度为多少

关键字比较次数永远是n(n-1)/2,记录移动次数最多为3(n-1),最少0次,前者起主导作用,因此实际上时间复杂度还是O(n^2)。

在直接选择排序中,共需要进行n-1次选择和交换,每次选择需要进行 n-i 次比较 (1<=i<=n-1),而每次交换最多需要3次移动,因此,总的比较次数C=(n*n - n)/2,总的移动次数 3(n-1).由此可知,直接选择排序的时间复杂度为 O(n2) 。



(7)直接选择排序算法复杂扩展阅读:

直接选择排序的基本思想是:第一次从R[0]~R[n-1]中选取最小值,与R[0]交换,第二次从R[1]~R[n-1]中选取最小值,与R[1]交换,....,第i次从R[i-1]~R[n-1]中选取最小值,与R[i-1]交换,.....,第n-1次从R[n-2]~R[n-1]中选取最小值。

与R[n-2]交换,总共通过n-1次,得到一个按排序码从小到大排列的有序序列。当记录占用字节数较多时,通常比直接插入排序的执行速度快些。由于在直接选择排序中存在着不相邻元素之间的互换,因此,直接选择排序是一种不稳定的排序方法。

阅读全文

与直接选择排序算法复杂相关的资料

热点内容
电脑服务器地址ip地址 浏览:823
对矩阵压缩是为了 浏览:910
setfacl命令 浏览:172
linux子系统中断 浏览:342
linux查看进程ps 浏览:224
知识库系统php 浏览:623
小波变换压缩图像python 浏览:151
阿里巴巴程序员怎么月入百万 浏览:173
如何使用国外服务器 浏览:188
燃灯者pdf 浏览:468
编译器用数学吗 浏览:7
图形化apk反编译工具 浏览:48
考勤表加密怎么办 浏览:735
arj压缩与解压批处理怎么写 浏览:658
php和大数据哪个好 浏览:930
未来最值得投资的加密货币 浏览:526
ascii码是编译的时候用吗 浏览:781
压缩机感应包可以通用吗 浏览:413
方舟服务器怎么发布到搜索列表 浏览:271
xml防反编译 浏览:242