① 插补法怎么算
插补法又称为内插法,可以用于计算资金价值系数中的利率和期数。
(1)“内插法”的原理是根据等比关系建立一个方程,然后解方程计算得出所要求的数据。
例如:假设与A1对应的数据是B1,与A2对应的数据是B2,A介于A1和A2之间,已知与A对应的数据是B,则可以按照(A1-A)/(A1-A2)=(B1-B)/(B1-B2)计算得出A的数值。
(2)仔细观察一下这个方程会看出一个特点,即相对应的数据在等式两方的位置相同。例如:A1位于等式左方表达式的分子和分母的左侧,与其对应的数字B1位于等式右方的表达式的分子和分母的左侧。
(3)还需要注意的一个问题是:如果对A1和A2的数值进行交换,则必须同时对B1和B2的数值也交换,否则,计算得出的结果一定不正确。
② 插补有哪些分类方式
一个零件的轮廓往往是多种多样的,有直线,有圆弧,也有可能是任意曲线,样条线等.数控机床的刀具往往是不能以曲线的实际轮廓去走刀的,而是近似地以若干条很小的直线去走刀,走刀的方向一般是x和y方向。插补方式有:直线插补,圆弧插补,抛物线插补,样条线插补等。
1、直线插补
直线插补(LineInterpolation)这是车床上常用的一种插补方式,在此方式中,两点间的插补沿着直线的点群来逼近,沿此直线控制刀具的运动。所谓直线插补就是只能用于实际轮廓是直线的插补方式(如果不是直线,也可以用逼近的方式把曲线用一段线段去逼近,从而每一段线段就可以用直线插补了).首先假设在实际轮廓起始点处沿x方向走一小段(一个脉冲当量),发现终点在实际轮廓的下方,则下一条线段沿y方向走一小段,此时如果线段终点还在实际轮廓下方,则继续沿y方向走一小段,直到在实际轮廓上方以后,再向x方向走一小段,依次循环类推.直到到达轮廓终点为止.这样,实际轮廓就由一段段的折线拼接而成,虽然是折线,但是如果我们每一段走刀线段都非常小(在精度允许范围内),那么此段折线和实际轮廓还是可以近似地看成相同的曲线的--------这就是直线插补。
2、圆弧插补
圆弧插补(CirculaInterpolation)这是一种插补方式,在此方式中,根据两端点间的插补数字信息,计算出逼近实际圆弧的点群,控制刀具沿这些点运动,加工出圆弧曲线。
3、复杂曲线实时插补算法
传统的CNC只提供直线和圆弧插补,对于非直线和圆弧曲线则采用直线和圆弧分段拟合的方法进行插补。这种方法在处理复杂曲线时会导致数据量大、精度差、进给速度不均、编程复杂等一系列问题,必然对加工质量和加工成本造成较大的影响。许多人开始寻求一种能够对复杂的自由型曲线曲面进行直接插补的方法。近年来,国内外的学者对此进行了大量的深入研究,由此也产生了很多新的插补方法。如A(AKIMA)样条曲线插补、C(CUBIC)样条曲线插补、贝塞尔(Bezier)曲线插补、PH(Pythagorean-Hodograph)曲线插补、B样条曲线插补等。由于B样条类曲线的诸多优点,尤其是在表示和设计自由型曲线曲面形状时显示出的强大功能,使得人们关于自由空间曲线曲面的直接插补算法的研究多集中在它身上。