导航:首页 > 源码编译 > 3desecb算法

3desecb算法

发布时间:2023-09-14 07:54:26

1. 什么是3DES对称加密算法

DES加密经过下面的步骤
1、提供明文和密钥,将明文按照64bit分块(对应8个字节),不足8个字节的可以进行填充(填充方式多种),密钥必须为8个字节共64bit
填充方式:

当明文长度不为分组长度的整数倍时,需要在最后一个分组中填充一些数据使其凑满一个分组长度。
* NoPadding
API或算法本身不对数据进行处理,加密数据由加密双方约定填补算法。例如若对字符串数据进行加解密,可以补充\0或者空格,然后trim

* PKCS5Padding
加密前:数据字节长度对8取余,余数为m,若m>0,则补足8-m个字节,字节数值为8-m,即差几个字节就补几个字节,字节数值即为补充的字节数,若为0则补充8个字节的8
解密后:取最后一个字节,值为m,则从数据尾部删除m个字节,剩余数据即为加密前的原文。
例如:加密字符串为为AAA,则补位为AAA55555;加密字符串为BBBBBB,则补位为BBBBBB22;加密字符串为CCCCCCCC,则补位为CCCCCCCC88888888。

* PKCS7Padding
PKCS7Padding 的填充方式和PKCS5Padding 填充方式一样。只是加密块的字节数不同。PKCS5Padding明确定义了加密块是8字节,PKCS7Padding加密快可以是1-255之间。
2、选择加密模式

**ECB模式** 全称Electronic Codebook模式,译为电子密码本模式
**CBC模式** 全称Cipher Block Chaining模式,译为密文分组链接模式
**CFB模式** 全称Cipher FeedBack模式,译为密文反馈模式
**OFB模式** 全称Output Feedback模式,译为输出反馈模式。
**CTR模式** 全称Counter模式,译为计数器模式。
3、开始加密明文(内部原理--加密步骤,加密算法实现不做讲解)

image
1、将分块的64bit一组组加密,示列其中一组:将此组进行初始置换(IP置换),目的是将输入的64位数据块按位重新组合,并把输出分为L0、R0两部分,每部分各长32位。
2、开始Feistel结构的16次转换,第一次转换为:右侧数据R0和子密钥经过轮函数f生成用于加密左侧数据的比特序列,与左侧数据L0异或运算,
运算结果输出为加密后的左侧L0,右侧数据则直接输出为右侧R0。由于一次Feistel轮并不会加密右侧,因此需要将上一轮输出后的左右两侧对调后才正式完成一次Feistel加密,
3、DES算法共计进行16次Feistel轮,最后一轮输出后左右两侧无需对调,每次加密的子密钥不相同,子密钥是通过秘钥计算得到的。
4、末置换是初始置换的逆过程,DES最后一轮后,左、右两半部分并未进行交换,而是两部分合并形成一个分组做为末置换的输入
DES解密经过下面的步骤
1、拿到密文和加密的密钥
2、解密:DES加密和解密的过程一致,均使用Feistel网络实现,区别仅在于解密时,密文作为输入,并逆序使用子密钥。
3、讲解密后的明文去填充 (padding)得到的即为明文
Golang实现DES加密解密
package main

import (
"fmt"
"crypto/des"
"bytes"
"crypto/cipher"
)

func main() {
var miwen,_= DESEncode([]byte("hello world"),[]byte("12345678"))
fmt.Println(miwen) // [11 42 146 232 31 180 156 225 164 50 102 170 202 234 123 129],密文:最后5位是补码
var txt,_ = DESDecode(miwen,[]byte("12345678"))
fmt.Println(txt) // [104 101 108 108 111 32 119 111 114 108 100]明码
fmt.Printf("%s",txt) // hello world
}
// 加密函数
func DESEncode(orignData, key []byte)([]byte,error){

// 建立密码块
block ,err:=des.NewCipher(key)
if err!=nil{ return nil,err}

// 明文分组,不足的部分加padding
txt := PKCS5Padding(orignData,block.BlockSize())

// 设定加密模式,为了方便,初始向量直接使用key充当了(实际项目中,最好别这么做)
blockMode := cipher.NewCBCEncrypter(block,key)

// 创建密文长度的切片,用来存放密文字节
crypted :=make([]byte,len(txt))

// 开始加密,将txt作为源,crypted作为目的切片输入
blockMode.CryptBlocks(crypted,txt)

// 将加密后的切片返回
return crypted,nil
}
// 加密所需padding
func PKCS5Padding(ciphertext []byte,size int)[]byte{
padding := size - len(ciphertext)%size
padTex := bytes.Repeat([]byte{byte(padding)},padding)
return append(ciphertext,padTex...)
}
// 解密函数
func DESDecode(cripter, key []byte) ([]byte,error) {
// 建立密码块
block ,err:=des.NewCipher(key)
if err!=nil{ return nil,err}

// 设置解密模式,加密模式和解密模式要一样
blockMode := cipher.NewCBCDecrypter(block,key)

// 设置切片长度,用来存放明文字节
originData := make([]byte,len(cripter))

// 使用解密模式解密,将解密后的明文字节放入originData 切片中
blockMode.CryptBlocks(originData,cripter)

// 去除加密的padding部分
strByt := UnPKCS5Padding(origenData)

return strByt,nil
}
// 解密所需要的Unpadding
func UnPKCS5Padding(origin []byte) []byte{
// 获取最后一位转为整型,然后根据这个整型截取掉整型数量的长度
// 若此数为5,则减掉转换明文后的最后5位,即为我们输入的明文
var last = int(origin[len(origin)-1])
return origin[:len(origin)-last]
}
注意:在设置加密模式为CBC的时候,我们需要设置一个初始化向量,这个量的意思 在对称加密算法中,如果只有一个密钥来加密数据的话,明文中的相同文字就会也会被加密成相同的密文,这样密文和明文就有完全相同的结构,容易破解,如果给一个初始化向量,第一个明文使用初始化向量混合并加密,第二个明文用第一个明文的加密后的密文与第二个明文混合加密,这样加密出来的密文的结构则完全与明文不同,更加安全可靠。CBC模式图如下

CBC
3DES
DES 的常见变体是三重 DES,使用 168 位的密钥对资料进行三次加密的一种机制;它通常(但非始终)提供极其强大的安全性。如果三个 56 位的子元素都相同,则三重 DES 向后兼容 DES。
对比DES,发现只是换了NewTripleDESCipher。不过,需要注意的是,密钥长度必须24byte,否则直接返回错误。关于这一点,PHP中却不是这样的,只要是8byte以上就行;而java中,要求必须是24byte以上,内部会取前24byte(相当于就是24byte)。另外,初始化向量长度是8byte(目前各个语言都是如此,不是8byte会有问题)

2. 如何禁用的SSLv3在IIS和RC4加密算法

为一个基于密码学的安全开发包,OpenSSL提供的功能相当强大和全面,囊括了主要的密码算法、常用的密钥和证书封装管理功能以及SSL协议,并提供了丰富的应用程序供测试或其它目的使用。
1.对称加密算法
OpenSSL一共提供了8种对称加密算法,其中7种是分组加密算法,仅有的一种流加密算法是RC4。这7种分组加密算法分别是AES、DES、Blowfish、CAST、IDEA、RC2、RC5,都支持电子密码本模式(ECB)、加密分组链接模式(CBC)、加密反馈模式(CFB)和输出反馈模式(OFB)四种常用的分组密码加密模式。其中,AES使用的加密反馈模式(CFB)和输出反馈模式(OFB)分组长度是128位,其它算法使用的则是64位。事实上,DES算法里面不仅仅是常用的DES算法,还支持三个密钥和两个密钥3DES算法。
2.非对称加密算法
OpenSSL一共实现了4种非对称加密算法,包括DH算法、RSA算法、DSA算法和椭圆曲线算法(EC)。DH算法一般用户密钥交换。RSA算法既可以用于密钥交换,也可以用于数字签名,当然,如果你能够忍受其缓慢的速度,那么也可以用于数据加密。DSA算法则一般只用于数字签名。
3.信息摘要算法
OpenSSL实现了5种信息摘要算法,分别是MD2、MD5、MDC2、SHA(SHA1)和RIPEMD。SHA算法事实上包括了SHA和SHA1两种信息摘要算法,此外,OpenSSL还实现了DSS标准中规定的两种信息摘要算法DSS和DSS1。
4.密钥和证书管理
密钥和证书管理是PKI的一个重要组成部分,OpenSSL为之提供了丰富的功能,支持多种标准。
首先,OpenSSL实现了ASN.1的证书和密钥相关标准,提供了对证书、公钥、私钥、证书请求以及CRL等数据对象的DER、PEM和BASE64的编解码功能。OpenSSL提供了产生各种公开密钥对和对称密钥的方法、函数和应用程序,同时提供了对公钥和私钥的DER编解码功能。并实现了私钥的PKCS#12和PKCS#8的编解码功能。OpenSSL在标准中提供了对私钥的加密保护功能,使得密钥可以安全地进行存储和分发。
在此基础上,OpenSSL实现了对证书的X.509标准编解码、PKCS#12格式的编解码以及PKCS#7的编解码功能。并提供了一种文本数据库,支持证书的管理功能,包括证书密钥产生、请求产生、证书签发、吊销和验证等功能。
事实上,OpenSSL提供的CA应用程序就是一个小型的证书管理中心(CA),实现了证书签发的整个流程和证书管理的大部分机制。
5.SSL和TLS协议
OpenSSL实现了SSL协议的SSLv2和SSLv3,支持了其中绝大部分算法协议。OpenSSL也实现了TLSv1.0,TLS是SSLv3的标准化版,虽然区别不大,但毕竟有很多细节不尽相同。
虽然已经有众多的软件实现了OpenSSL的功能,但是OpenSSL里面实现的SSL协议能够让我们对SSL协议有一个更加清楚的认识,因为至少存在两点:一是OpenSSL实现的SSL协议是开放源代码的,我们可以追究SSL协议实现的每一个细节;二是OpenSSL实现的SSL协议是纯粹的SSL协议,没有跟其它协议(如HTTP)协议结合在一起,澄清了SSL协议的本来面目。
6.应用程序
OpenSSL的应用程序已经成为了OpenSSL重要的一个组成部分,其重要性恐怕是OpenSSL的开发者开始没有想到的。现在OpenSSL的应用中,很多都是基于OpenSSL的应用程序而不是其API的,如OpenCA,就是完全使用OpenSSL的应用程序实现的。OpenSSL的应用程序是基于OpenSSL的密码算法库和SSL协议库写成的,所以也是一些非常好的OpenSSL的API使用范例,读懂所有这些范例,你对OpenSSL的API使用了解就比较全面了,当然,这也是一项锻炼你的意志力的工作。
OpenSSL的应用程序提供了相对全面的功能,在相当多的人看来,OpenSSL已经为自己做好了一切,不需要再做更多的开发工作了,所以,他们也把这些应用程序成为OpenSSL的指令。OpenSSL的应用程序主要包括密钥生成、证书管理、格式转换、数据加密和签名、SSL测试以及其它辅助配置功能。
7.Engine机制 Engine机制的出现是在OpenSSL的0.9.6版的事情,开始的时候是将普通版本跟支持Engine的版本分开的,到了OpenSSL的0.9.7版,Engine机制集成到了OpenSSL的内核中,成为了OpenSSL不可缺少的一部分。 Engine机制目的是为了使OpenSSL能够透明地使用第三方提供的软件加密库或者硬件加密设备进行加密。OpenSSL的Engine机制成功地达到了这个目的,这使得OpenSSL已经不仅仅使一个加密库,而是提供了一个通用地加密接口,能够与绝大部分加密库或者加密设备协调工作。当然,要使特定加密库或加密设备更OpenSSL协调工作,需要写少量的接口代码,但是这样的工作量并不大,虽然还是需要一点密码学的知识。Engine机制的功能跟Windows提供的CSP功能目标是基本相同的。目前,OpenSSL的0.9.7版本支持的内嵌第三方加密设备有8种,包括:CryptoSwift、nCipher、Atalla、Nuron、UBSEC、Aep、SureWare以及IBM 4758 CCA的硬件加密设备。现在还出现了支持PKCS#11接口的Engine接口,支持微软CryptoAPI的接口也有人进行开发。当然,所有上述Engine接口支持不一定很全面,比如,可能支持其中一两种公开密钥算法。
8.辅助功能
BIO机制是OpenSSL提供的一种高层IO接口,该接口封装了几乎所有类型的IO接口,如内存访问、文件访问以及Socket等。这使得代码的重用性大幅度提高,OpenSSL提供API的复杂性也降低了很多。
OpenSSL对于随机数的生成和管理也提供了一整套的解决方法和支持API函数。随机数的好坏是决定一个密钥是否安全的重要前提。
OpenSSL还提供了其它的一些辅助功能,如从口令生成密钥的API,证书签发和管理中的配置文件机制等等。如果你有足够的耐心,将会在深入使用OpenSSL的过程慢慢发现很多这样的小功能,让你不断有新的惊喜。

3. 密码学基础(二):对称加密

加密和解密使用相同的秘钥称为对称加密。

DES:已经淘汰
3DES:相对于DES有所加强,但是仍然存在较大风险
AES:全新的对称加密算法。

特点决定使用场景,对称加密拥有如下特点:

速度快,可用于频率很高的加密场景。

使用同一个秘钥进行加密和解密。

可选按照128、192、256位为一组的加密方式,加密后的输出值为所选分组位数的倍数。密钥的长度不同,推荐加密轮数也不同,加密强度也更强。

例如:
AES加密结果的长度由原字符串长度决定:一个字符为1byte=4bit,一个字符串为n+1byte,因为最后一位为'',所以当字符串长度小于等于15时,AES128得到的16进制结果为32位,也就是32 4=128byte,当长度超过15时,就是64位为128 2byte。

因为对称加密速度快的特点,对称加密被广泛运用在各种加密场所中。但是因为其需要传递秘钥,一旦秘钥被截获或者泄露,其加密就会玩完全破解,所以AES一般和RSA一起使用。

因为RSA不用传递秘钥,加密速度慢,所以一般使用RSA加密AES中锁使用的秘钥后,再传递秘钥,保证秘钥的安全。秘钥安全传递成功后,一直使用AES对会话中的信息进行加密,以此来解决AES和RSA的缺点并完美发挥两者的优点,其中相对经典的例子就是HTTPS加密,后文会专门研究。

本文针对ECB模式下的AES算法进行大概讲解,针对每一步的详细算法不再该文讨论范围内。

128位的明文被分成16个字节的明文矩阵,然后将明文矩阵转化成状态矩阵,以“abcdefghijklmnop”的明文为例:

同样的,128位密钥被分成16组的状态矩阵。与明文不同的是,密文会以列为单位,生成最初的4x8x4=128的秘钥,也就是一个组中有4个元素,每个元素由每列中的4个秘钥叠加而成,其中矩阵中的每个秘钥为1个字节也就是8位。

生成初始的w[0]、w[1]、w[2]、w[3]原始密钥之后,通过密钥编排函数,该密钥矩阵被扩展成一个44个组成的序列W[0],W[1], … ,W[43]。该序列的前4个元素W[0],W[1],W[2],W[3]是原始密钥,用于加密运算中的初始密钥加,后面40个字分为10组,每组4个32位的字段组成,总共为128位,分别用于10轮加密运算中的轮密钥加密,如下图所示:

之所以把这一步单独提出来,是因为ECB和CBC模式中主要的区别就在这一步。

ECB模式中,初始秘钥扩展后生成秘钥组后(w0-w43),明文根据当前轮数取出w[i,i+3]进行加密操作。

CBC模式中,则使用前一轮的密文(明文加密之后的值)和当前的明文进行异或操作之后再进行加密操作。如图所示:

根据不同位数分组,官方推荐的加密轮数:

轮操作加密的第1轮到第9轮的轮函数一样,包括4个操作:字节代换、行位移、列混合和轮密钥加。最后一轮迭代不执行列混合。

当第一组加密完成时,后面的组循环进行加密操作知道所有的组都完成加密操作。

一般会将结果转化成base64位,此时在iOS中应该使用base64编码的方式进行解码操作,而不是UTF-8。

base64是一种编码方式,常用语传输8bit字节码。其编码原理如下所示:

将原数据按照3个字节取为一组,即为3x8=24位

将3x8=24的数据分为4x6=24的数据,也就是分为了4组

将4个组中的数据分别在高位补上2个0,也就成了8x4=32,所以原数据增大了三分之一。

根据base64编码表对数据进行转换,如果要编码的二进制数据不是3的倍数,最后会剩下1个或2个字节怎么办,Base64用x00字节在末尾补足后,再在编码的末尾加上1个或2个=号,表示补了多少字节,解码的时候,会自动去掉。

举个栗子:Man最后的结果就是TWFu。

计算机中所有的数据都是以0和1的二进制来存储,而所有的文字都是通过ascii表转化而来进而显示成对应的语言。但是ascii表中存在许多不可见字符,这些不可见字符在数据传输时,有可能经过不同硬件上各种类型的路由,在转义时容易发生错误,所以规定了64个可见字符(a-z、A-Z、0-9、+、/),通过base64转码之后,所有的二进制数据都是可见的。

ECB和CBC是两种加密工作模式。其相同点都是在开始轮加密之前,将明文和密文按照128/192/256进行分组。以128位为例,明文和密文都分为16组,每组1个字节为8位。

ECB工作模式中,每一组的明文和密文相互独立,每一组的明文通过对应该组的密文加密后生成密文,不影响其他组。

CBC工作模式中,后一组的明文在加密之前先使用前一组的密文进行异或运算后再和对应该组的密文进行加密操作生成密文。

为简单的分组加密。将明文和密文分成若干组后,使用密文对明文进行加密生成密文
CBC

加密:

解密:

4. android 3DES加密和MD5加密

经常使用加密算法:DES、3DES、RC4、AES,RSA等;
对称加密:des,3des,aes
非对称加密:rsa
不可逆加密:md5
加密模式:ECB、CBC、CFB、OFB等;
填充模式:NoPadding、PKCS1Padding、PKCS5Padding、PKCS7Padding

5. 密码学基础之对称加密(一)

就不给定义了,我简单解释下,就是我的信息不想让别人知道,使用 秘钥(key) 对我的信息进行 加密(encrypt) ,变成鬼符一样的 秘文(ciphertext) 。别人就算看到了,也无法识别,只有有了秘钥,把秘文 解密(decrypt) 后才能看懂信息,秘钥呢?一般人我不告诉他。我的秘钥是私密信息,所以也叫 私钥(private key) ,加密和解密用的秘钥是相同的,所以叫 “对称加密” ,也叫 “私钥加密”

对于明文plaintext,和对称秘钥key
加密过程 E(plaintext, key) = ciphertext
解密过程 D(ciphertext, key) = plaintext

对称加密的分为 分组密码(block cipher) 流密码(stream cipher) 两种类型。本文只介绍分组密码。

分组密码是每次只能处理特定长度的一块(block)数据的一类加解密算法。AES就是一种分组密码算法。AES加密算法每次可以加密的块长度是128位(bit)。

ECB模式
使用AES加密算法ECB模式,每次能加密128位数据,即16个字节。如果要加密48个字节内容,我们需要把数据分为3组,每组16个字节,分别为P1、P2、P3。P1、P2、P3加密后形成的秘文分别为C1、C2、C3,我们把C1、C2、C3依次拼接起来就成为最终的加密结果。

CBC模式

《对称加密之对称加密二》正在写作,会包含分组密码的更多模式,流密码及AES的更多知识。

DES加密:旧的加密算法,NIST规定仅能用于遗留系统和TDEA。(参考文献[CNS] 3.2章)
TDEA(Triple DEA)加密:很多资料也叫3DES(Triple DES)。(参考文献[SP800-67])

Python 可以使用 pycrypto 模块进行AES加解密。安装 pycrypto 可使用命令 pip install pycrypto 安装。

下面AES演示第一版,先看下,紧接着就会升级到第二版本。

运行一下,能正常加解密。但是,如果你把要加密的文本,从 aesAlgorithmDemo 改为 hello ,就会运行报错:

这是因为,AES的分组长度是128位,即16个字节。有些AES实现,要加密的消息长度不是16个字节的倍数需要填充。
填充的方法一般是按照PKCS#7填充标准。

如果要数据的长度不是分组的整数倍,需要填充数据到分组的倍数,如果数据的长度是分组的倍数,需要填充分组长度的数据,填充的每个字节值为填充的长度。PKCS#7支持的分组长度为1到255个字节。
举一些例子:
AES的分组长度为16个字节,不管秘钥是128位、192位还是256位。如果要加密的数据长度是5个字节,你需要填充11个字节,填充的内容位填充的长度0x0b。填充后类似下面表示

如果数据长度是30个字节,需要填充2个字节,每个字节的内容为0x02,如果数据成都恰好为16的倍数,需要填充16个字节,每个字节的内容为0x10。

弄明白填充的概念后,我们重写加解密函数如下:

这样填充后会不会可其它系统不兼容?不会。一般的AES程序都是支持PKCS#7填充的。

密码学基础之RSA与不对称秘钥
密码学基础系列

[CNS] 《密码编码学与网络安全》(第六版)
[SP800-67] NIST Special Publication 800-67 Revision 1, Recommendation for Triple Data Encryption Algorithm (TDEA) Block Cipher, January 2012.
[SSH] OpenSSH CBC模式信息泄露漏洞
[NIST SP 800-57 Part 1 Rev. 4] Recommendation for Key Management, Part 1: General

6. 常见密码技术简介

##

密码技术在网络传输安全上的应用

随着互联网电子商务和网络支付的飞速发展,互联网安全已经是当前最重要的因素之一。作为一名合格的软件开发工程师,有必要了解整个互联网是如何来保证数据的安全传输的,本篇文章对网络传输安全体系以及涉及到的算法知识做了一个简要的介绍,希望大家能够有一个初步的了解。

###密码技术定义

简单的理解,密码技术就是编制密码和破译密码的一门技术,也即是我们常说的加密和解密。常见的结构如图:

其中涉及到的专业术语:

1.秘钥:分为加密秘钥和解密秘钥,两者相同的加密算法称为对称加密,不同的称为非对称加密;

2.明文:未加密过的原文信息,不可以被泄露;

3.密文:经过加密处理后的信息,无法从中获取有效的明文信息;

4.加密:明文转成密文的过程,密文的长度根据不同的加密算法也会有不同的增量;

5.解密:密文转成明文的过程;

6.加密/解密算法:密码系统使用的加密方法和解密方法;

7.攻击:通过截获数据流、钓鱼、木马、穷举等方式最终获取秘钥和明文的手段。

###密码技术和我们的工作生活息息相关

在我们的日常生活和工作中,密码技术的应用随处可见,尤其是在互联网系统上。下面列举几张比较有代表性的图片,所涉及到的知识点后面都会一一讲解到。

1.12306旧版网站每次访问时,浏览器一般会提示一个警告,是什么原因导致的? 这样有什么风险呢?

2.360浏览器浏览HTTPS网站时,点开地址栏的小锁图标会显示加密的详细信息,比如网络的话会显示```AES_128_GCM、ECDHE_RSA```,这些是什么意思?

3.在Mac系统的钥匙串里有很多的系统根证书,展开后有非常多的信息,这些是做什么用的?

4.去银行开通网上支付都会附赠一个U盾,那U盾有什么用呢?

##如何确保网络数据的传输安全

接下来我们从实际场景出发,以最常见的客户端Client和服务端Server传输文件为例来一步步了解整个安全体系。

####1. 保密性

首先客户端要把文件送到服务端,不能以明文形式发送,否则被黑客截获了数据流很容易就获取到了整个文件。也就是文件必须要确保保密性,这就需要用到对称加密算法。 

** 对称加密: **加密和解密所使用的秘钥相同称为对称加密。其特点是速度快、效率高,适用于对较大量的数据进行加密。常见的对称加密算法有DES、3DES、AES、TDEA、RC5等,让我们了解下最常见的3DES和AES算法:

** DES(Data Encryption Standard): **1972年由美国IBM研制,数学原理是将明文以8字节分组(不足8位可以有不同模式的填充补位),通过数学置换和逆置换得到加密结果,密文和明文长度基本相同。秘钥长度为8个字节,后有了更安全的一个变形,使用3条秘钥进行三次加密,也就是3DES加密。

**3DES:**可以理解为对明文进行了三次DES加密,增强了安全程度。

** AES(Advanced Encryption Standard): **2001年由美国发布,2002年成为有效标准,2006年成为最流行的对称加密算法之一。由于安全程度更高,正在逐步替代3DES算法。其明文分组长度为16字节,秘钥长度可以为16、24、32(128、192、256位)字节,根据秘钥长度,算法被称为AES-128、AES-192和AES-256。

对称加密算法的入参基本类似,都是明文、秘钥和模式三个参数。可以通过网站进行模拟测试:[http://tool.chacuo.net/crypt3des]()。其中的模式我们主要了解下ECB和CBC两种简单模式,其它有兴趣可自行查阅。

** ECB模式(Electronic Codebook Book): **这种模式是将明文分成若干小段,然后对每一段进行单独的加密,每一段之间不受影响,可以单独的对某几段密文进行解密。

** CBC模式(Cipher Block Chaining): **这种模式是将明文分成若干小段,然后每一段都会和初始向量(上图的iv偏移量)或者上一段的密文进行异或运算后再进行加密,不可以单独解密某一断密文。

 ** 填充补位: **常用为PKCS5Padding,规则为缺几位就在后面补几位的所缺位数。,比如明文数据为```/x01/x01/x01/x01/x01/x01```6个字节,缺2位补```/x02```,补完位```/x01/x01/x01/x01/x01/x01/x02/x02```。解密后也会按照这个规则进行逆处理。需要注意的是:明文为8位时也需要在后面补充8个```/x08```。

####2. 真实性

客户端有了对称秘钥,就需要考虑如何将秘钥送到服务端,问题跟上面一样:不能以明文形式直接传输,否则还是会被黑客截获到。这里就需要用到非对称加密算法。

** 非对称加密: **加密和解密秘钥不同,分别称为公开秘钥(publicKey)和私有秘钥(privateKey)。两者成对出现,公钥加密只能用私钥解密,而私钥加密也只能用公钥加密。两者不同的是:公钥是公开的,可以随意提供给任何人,而私钥必须保密。特点是保密性好,但是加密速度慢。常见的非对称加密算法有RSA、ECC等;我们了解下常见的RSA算法:

** RSA(Ron Rivest、Adi Shamir、Leonard Adleman): **1977年由麻省理工学院三人提出,RSA就是他们三个人的姓氏开头字母拼在一起组成的。数学原理是基于大数分解。类似于```100=20x5```,如果只知道100的话,需要多次计算才可以试出20和5两个因子。如果100改为极大的一个数,就非常难去试出真正的结果了。下面是随机生成的一对公私钥:

这是使用公钥加密后结果:

RSA的这种特性就可以保证私钥持有者的真实性,客户端使用公钥加密文件后,黑客就算截获到数据因为没有私钥也是无法解密的。

** Tips: **

+** 不使用对称加密,直接用RSA公私钥进行加密和解密可以吗? **

答案:不可以,第一是因为RSA加密速度比对称加密要慢几十倍甚至几百倍以上,第二是因为RSA加密后的数据量会变大很多。

+** 由服务端生成对称秘钥,然后用私钥加密,客户端用公钥解密这样来保证对称秘钥安全可行吗? **

答案:不可行,因为公钥是公开的,任何一个人都可以拿到公钥解密获取对称秘钥。

####3. 完整性

当客户端向服务端发送对称秘钥加密后的文件时,如果被黑客截获,虽然无法解密得到对称秘钥。但是黑客可以用服务端公钥加密一个假的对称秘钥,并用假的对称秘钥加密一份假文件发给服务端,这样服务端会仍然认为是真的客户端发送来的,而并不知道阅读的文件都已经是掉包的了。

这个问题就需要用到散列算法,也可以译为Hash。常见的比如MD4、MD5、SHA-1、SHA-2等。

** 散列算法(哈希算法): **简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。而且该过程是不可逆的,无法通过摘要获得原文。

** SHA-1(Secure Hash Algorithm 1): **由美国提出,可以生成一个20字节长度的消息摘要。05年被发现了针对SHA-1的有效攻击方法,已经不再安全。2010年以后建议使用SHA-2和SHA-3替代SHA-1。

** SHA-2(Secure Hash Algorithm 2): **其下又分为六个不同算法标准:SHA-224、SHA-256、SHA-384、SHA-512、SHA-512/224、SHA512/256。其后面数字为摘要结果的长度,越长的话碰撞几率越小。SHA-224的使用如下图:

客户端通过上面的散列算法可以获取文件的摘要消息,然后用客户端私钥加密后连同加密的文件发给服务端。黑客截获到数据后,他没有服务端私钥无法获取到对称秘钥,也没有客户端私钥无法伪造摘要消息。如果再像上面一样去掉包文件,服务端收到解密得到摘要消息一对比就可以知道文件已经被掉包篡改过了。

这种用私钥对摘要消息进行加密的过程称之为数字签名,它就解决了文件是否被篡改问题,也同时可以确定发送者身份。通常这么定义:

** 加密: **用公钥加密数据时称为加密。

** 签名: **用私钥加密数据时称为签名。

####4. 信任性

我们通过对称加密算法加密文件,通过非对称加密传输对称秘钥,再通过散列算法保证文件没被篡改过和发送者身份。这样就安全了吗?

答案是否定的,因为公钥是要通过网络送到对方的。在这期间如果出现问题会导致客户端收到的公钥并不一定是服务端的真实公钥。常见的** 中间人攻击 **就是例子:

** 中间人攻击MITM(Man-in-the-MiddleAttack): **攻击者伪装成代理服务器,在服务端发送公钥证书时,篡改成攻击者的。然后收到客户端数据后使用攻击者私钥解密,再篡改后使用攻击者私钥签名并且将攻击者的公钥证书发送给服务器。这样攻击者就可以同时欺骗双方获取到明文。

这个风险就需要通过CA机构对公钥证书进行数字签名绑定公钥和公钥所属人,也就是PKI体系。

** PKI(Privilege Management Infrastructure): **支持公钥管理并能支持认证、加密、完整性和可追究性的基础设施。可以说整个互联网数据传输都是通过PKI体系进行安全保证的。

** CA(Certificate Authority): **CA机构就是负责颁发证书的,是一个比较公认的权威的证书发布机构。CA有一个管理标准:WebTrust。只有通过WebTrust国际安全审计认证,根证书才能预装到主流的浏览器而成为一个全球可信的认证机构。比如美国的GlobalSign、VeriSign、DigiCert,加拿大的Entrust。我国的CA金融方面由中国人民银行管理CFCA,非金融CA方面最初由中国电信负责建设。

CA证书申请流程:公司提交相应材料后,CA机构会提供给公司一张证书和其私钥。会把Issuer,Public key,Subject,Valid from,Valid to等信息以明文的形式写到证书里面,然后用一个指纹算法计算出这些数字证书内容的一个指纹,并把指纹和指纹算法用自己的私钥进行加密。由于浏览器基本都内置了CA机构的根证书,所以可以正确的验证公司证书指纹(验签),就不会有安全警告了。

但是:所有的公司其实都可以发布证书,甚至我们个人都可以随意的去发布证书。但是由于浏览器没有内置我们的根证书,当客户端浏览器收到我们个人发布的证书后,找不到根证书进行验签,浏览器就会直接警告提示,这就是之前12306打开会有警告的原因。这种个人发布的证书,其实可以通过系统设置为受信任的证书去消除这个警告。但是由于这种证书机构的权威性和安全性难以信任,大家最好不要这么做。

我们看一下网络HTTPS的证书信息:

其中比较重要的信息:

签发机构:GlobalSign Root CA;

有效日期:2018-04-03到2019-05-26之间可用;

公钥信息:RSA加密,2048位;

数字签名:带 RSA 加密的 SHA-256 ( 1.2.840.113549.1.1.11 )

绑定域名:再进行HTTPS验证时,如果当前域名和证书绑定域名不一致,也会出现警告;

URI:在线管理地址。如果当前私钥出现了风险,CA机构可以在线吊销该证书。

####5. 不可抵赖性

看起来整个过程都很安全了,但是仍存在一种风险:服务端签名后拒不承认,归咎于故障不履行合同怎么办。

解决方法是采用数字时间戳服务:DTS。

** DTS(digital time-stamp): **作用就是对于成功的电子商务应用,要求参与交易各方不能否认其行为。一般来说,数字时间戳产生的过程为:用户首先将需要加时间戳的文件用Hash算法运算形成摘要,然后将该摘要发送到DTS。DTS在加入了收到文件摘要的日期和事件信息后再对该文件进行数字签名,然后送达用户。

####6. 再次认证

我们有了数字证书保证了身份的真实性,又有了DTS提供的不可抵赖性。但是还是不能百分百确定使用私钥的就是合法持有者。有可能出现被别人盗用私钥进行交易的风险。

解决这个就需要用到强口令、认证令牌OTP、智能卡、U盾或生物特征等技术对使用私钥的当前用户进行认证,已确定其合法性。我们简单了解下很常见的U盾。

** USB Key(U盾): **刚出现时外形比较像U盘,安全性能像一面盾牌,取名U盾。其内部有一个只可写不可读的区域存储着用户的私钥(也有公钥证书),银行同样也拥有一份。当进行交易时,所有涉及到私钥的运算都在U盾内部进行,私钥不会泄露。当交易确认时,交易的详细数据会显示到U盾屏幕上,确认无误后通过物理按键确认就可以成功交易了。就算出现问题黑客也是无法控制U盾的物理按键的,用户可以及时取消避免损失。有的U盾里面还有多份证书,来支持国密算法。

** 国密算法: **国家密码局针对各种算法制定了一些列国产密码算法。具体包括:SM1对称加密算法、SM2公钥算法、SM3摘要算法、SM4对称加密算法、ZUC祖冲之算法等。这样可以对国产固件安全和数据安全进行进一步的安全控制。

## HTTPS分析

有了上面的知识,我们可以尝试去分析下HTTPS的整个过程,用Wireshark截取一次HTTPS报文:

Client Hello: 客户端发送Hello到服务端443端口,里面包含了随机数、客户端支持的加密算法、客户端的TLS版本号等;

Server Hello: 服务端回应Hello到客户端,里面包含了服务端选择的加密套件、随机数等;

Certificate: 服务端向客户端发送证书

服务端计算对称秘钥:通过ECDH算法得到对称秘钥

客户端计算对称秘钥:通过ECDH算法得到对称秘钥

开始用对称秘钥进行加密传输数据

其中我们又遇到了新的算法:DH算法

** DH(Diffie-Hellman): **1976年由Whitefield与Martin Hellman提出的一个奇妙的秘钥交换协议。这个机制的巧妙在于可以通过安全的方式使双方获得一个相同的秘钥。数学原理是基于原根的性质,如图:

*** DH算法的用处不是为了加密或解密消息,而是用于通信双方安全的交换一个相同的秘钥。 ***

** ECDH: **基于ECC(椭圆曲线密码体制)的DH秘钥交换算法,数学原理是基于椭圆曲线上的离散对数问题。

** ECDHE: **字面少了一个E,E代表了临时。在握手流程中,作为服务器端,ECDH使用证书公钥代替Pb,使用自身私钥代替Xb。这个算法时服务器不发送server key exchange报文,因为发送certificate报文时,证书本身就包含了Pb信息。

##总结

| 算法名称  | 特点 | 用处 | 常用算法名 |

| --- | :--- | :---: | ---: |

| 对称加密  | 速度快,效率高| 用于直接加密文件 | 3DES、AES、RC4 |

| 非对称加密  | 速度相对慢,但是确保安全 | 构建CA体系 | RSA、ECC |

| 散列算法 | 算出的摘要长度固定,不可逆 | 防止文件篡改 | SHA-1、SHA-2 |

| DH算法 | 安全的推导出对称秘钥 | 交换对称秘钥 | ECDH |

----

7. 对称加密算法以及使用方法

加密的原因:保证数据安全

加密必备要素:1、明文/密文    2、秘钥    3、算法

秘钥:在密码学中是一个定长的字符串、需要根据加密算法确定其长度

加密算法解密算法一般互逆、也可能相同

常用的两种加密方式:

对称加密:秘钥:加密解密使用同一个密钥、数据的机密性双向保证、加密效率高、适合加密于大数据大文件、加密强度不高(相对于非对称加密)

非对称加密:秘钥:加密解密使用的不同秘钥、有两个密钥、需要使用密钥生成算法生成两个秘钥、数据的机密性只能单向加密、如果想解决这个问题、双向都需要各自有一对秘钥、加密效率低、加密强度高

                    公钥:可以公开出来的密钥、公钥加密私钥解密

                    私钥:需要自己妥善保管、不能公开、私钥加密公钥解密

安全程度高:多次加密

按位异或运算

凯撒密码:加密方式    通过将铭文所使用的字母表按照一定的字数平移来进行加密

mod:取余

加密三要素:明文/密文(字母)、秘钥(3)、算法(向右平移3/-3)

安全常识:不要使用自己研发的算法、不要钻牛角尖、没必要研究底层实现、了解怎么应用;低强度的密码比不进行任何加密更危险;任何密码都会被破解;密码只是信息安全的一部分

保证数据的机密性、完整性、认证、不可否认性

计算机操作对象不是文字、而是由0或1排列而成的比特序列、程序存储在磁盘是二进制的字符串、为比特序列、将现实的东西映射为比特序列的操作称为编码、加密又称之为编码、解密称之为解码、根据ASCII对照表找到对应的数字、转换成二进制

三种对称加密算法:DES\3DES\ AES  

DES:已经被破解、除了用它来解密以前的明文、不再使用

密钥长度为56bit/8、为7byte、每隔7个bit会设置一个用于错误检查的比特、因此实际上是64bit

分组密码(以组为单位进行处理):加密时是按照一个单位进行加密(8个字节/64bit为一组)、每一组结合秘钥通过加密算法得到密文、加密后的长度不变

3DES:三重DES为了增加DES的强度、将DES重复三次所得到的一种加密算法   密钥长度24byte、分成三份  加密--解密--加密 目的:为了兼容DES、秘钥1秘钥2相同==三个秘钥相同  ---加密一次        密钥1秘钥3相同--加密三次    三个密钥不相同最好、此时解密相当于加密、中间的一次解密是为了有三个密钥相同的情况

此时的解密操作与加密操作互逆,安全、效率低

数据先解密后加密可以么?可以、解密相当于加密、加密解密说的是算法

AES:(首选推荐)底层算法为Rijndael   分组长度为128bit、密钥长度为128bit到256bit范围内就可以   但是在AES中、密钥长度只有128bit\192bit\256bit     在go提供的接口中、只能是16字节(128bit)、其他语言中秘钥可以选择

目前为止最安全的、效率高

底层算法

分组密码的模式:

按位异或、对数据进行位运算、先将数据转换成二进制、按位异或操作符^、相同为真、不同为假、非0为假    按位异或一次为加密操作、按位异或两次为解密操作:a和b按位异或一次、结果再和b按位异或

ECB : 如果明文有规律、加密后的密文有规律不安全、go里不提供该接口、明文分组分成固定大小的块、如果最后一个分组不满足分组长度、则需要补位

CBC:密码链

问题:如何对字符串进行按位异或?解决了ECB的规律可查缺点、但是他不能并行处理、最后一个明文分组也需要填充 、初始化向量长度与分组长度相同

CFB:密文反馈模式

不需要填充最后一个分组、对密文进行加密

OFB:

不需要对最后一组进行填充

CTR计数器:

不需要对最后一组进行填充、不需要初始化向量     

Go中的实现

官方文档中:

在创建aes或者是des接口时都是调用如下的方法、返回的block为一个接口

func NewCipher(key [] byte ) ( cipher . Block , error )

type Block interface {

    // 返回加密字节块的大小

    BlockSize() int

    // 加密src的第一块数据并写入dst,src和dst可指向同一内存地址

    Encrypt(dst, src []byte)

    // 解密src的第一块数据并写入dst,src和dst可指向同一内存地址

    Decrypt(dst, src []byte)

}

Block接口代表一个使用特定密钥的底层块加/解密器。它提供了加密和解密独立数据块的能力。

Block的Encrypt/Decrypt也能进行加密、但是只能加密第一组、因为aes的密钥长度为16、所以进行操作的第一组数据长度也是16

如果分组模式选择的是cbc

func NewCBCEncrypter(b Block, iv []byte) BlockMode    加密

func NewCBCDecrypter(b Block, iv []byte) BlockMode    解密

加密解密都调用同一个方法CryptBlocks()

并且cbc分组模式都会遇到明文最后一个分组的补充、所以会用到加密字节的大小

返回一个密码分组链接模式的、底层用b加密的BlockMode接口,初始向量iv的长度必须等于b的块尺寸。iv自己定义

返回的BlockMode同样也是一个接口类型

type BlockMode interface {

    // 返回加密字节块的大小

    BlockSize() int

    // 加密或解密连续的数据块,src的尺寸必须是块大小的整数倍,src和dst可指向同一内存地址

    CryptBlocks(dst, src []byte)

}

BlockMode接口代表一个工作在块模式(如CBC、ECB等)的加/解密器

返回的BlockMode其实是一个cbc的指针类型中的b和iv

# 加密流程: 

1. 创建一个底层使用des/3des/aes的密码接口 "crypto/des" func NewCipher(key []byte) (cipher.Block, error) # -- des func NewTripleDESCipher(key []byte) (cipher.Block, error) # -- 3des "crypto/aes" func NewCipher(key []byte) (cipher.Block, error) # == aes 

2. 如果使用的是cbc/ecb分组模式需要对明文分组进行填充

3. 创建一个密码分组模式的接口对象 - cbc func NewCBCEncrypter(b Block, iv []byte) BlockMode # 加密 - cfb func NewCFBEncrypter(block Block, iv []byte) Stream # 加密 - ofb - ctr

 4. 加密, 得到密文

流程:

填充明文:

先求出最后一组中的字节数、创建新切片、长度为新切片、值也为切片的长度、然后利用bytes.Reapet将长度换成字节切片、追加到原明文中

//明文补充

func padPlaintText(plaintText []byte,blockSize int)[]byte{

    //1、求出需要填充的个数

    padNum := blockSize-len(plaintText) % blockSize

    //2、对填充的个数进行操作、与原明文进行合并

    newPadding := []byte{byte(padNum)}

    newPlain := bytes.Repeat(newPadding,padNum)

    plaintText = append(plaintText,newPlain...)

    return plaintText

}

去掉填充数据:

拿去切片中的最后一个字节、得到尾部填充的字节个数、截取返回

//解密后的明文曲调补充的地方

func createPlaintText(plaintText []byte,blockSize int)[]byte{

    //1、得到最后一个字节、并将字节转换成数字、去掉明文中此数字大小的字节

    padNum := int(plaintText[len(plaintText)-1])

    newPadding := plaintText[:len(plaintText)-padNum]

    return newPadding

}

des加密:

1、创建一个底层使用des的密码接口、参数为秘钥、返回一个接口

2、对明文进行填充

3、创建一个cbc模式的接口、需要创建iv初始化向量、返回一个blockmode对象

4、加密、调用blockmode中的cryptBlock函数进行加密、参数为目标参数和源参数

//des利用分组模式cbc进行加密

func EncryptoText(plaintText []byte,key []byte)[]byte{

    //1、创建des对象

    cipherBlock,err := des.NewCipher(key)

    if err != nil {

        panic(err)

    }

    //2、对明文进行填充

    newText := padPlaintText(plaintText,cipherBlock.BlockSize())

    //3、选择分组模式、其中向量的长度必须与分组长度相同

    iv := make([]byte,cipherBlock.BlockSize())

    blockMode := cipher.NewCBCEncrypter(cipherBlock,iv)

    //4、加密

    blockMode.CryptBlocks(newText,newText)

    return newText

}

des解密:

1、创建一个底层使用des的密码接口、参数为秘钥、返回一个接口

2、创建一个cbc模式的接口、需要创建iv初始化向量,返回一个blockmode对象

3、加密、调用blockmode中的cryptBlock函数进行解密、参数为目标参数和源参数

4、调用去掉填充数据的方法

//des利用分组模式cbc进行解密

func DecryptoText(cipherText []byte, key []byte)[]byte{

    //1、创建des对象

    cipherBlock,err := des.NewCipher(key)

    if err != nil {

        panic(err)

    }

    //2、创建cbc分组模式接口

    iv := []byte("12345678")

    blockMode := cipher.NewCBCDecrypter(cipherBlock,iv)

    //3、解密

    blockMode.CryptBlocks(cipherText,cipherText)

    //4、将解密后的数据进行去除填充的数据

    newText := clearPlaintText(cipherText,cipherBlock.BlockSize())

    return newText

}

Main函数调用

func main(){

    //需要进行加密的明文

    plaintText := []byte("CBC--密文没有规律、经常使用的加密方式,最后一个分组需要填充,需要初始化向量" +

        "(一个数组、数组的长度与明文分组相等、数据来源:负责加密的人提供,加解密使用的初始化向量必须相同)")

    //密钥Key的长度需要与分组长度相同、且加密解密的密钥相同

    key := []byte("1234abcd")

    //调用加密函数

    cipherText := EncryptoText(plaintText,key)

    newPlaintText := DecryptoText(cipherText,key)

    fmt.Println(string(newPlaintText))

}

AES加密解密相同、所以只需要调用一次方法就可以加密、调用两次则解密

推荐是用分组模式:cbc、ctr

aes利用分组模式cbc进行加密

//对明文进行补充

func paddingPlaintText(plaintText []byte , blockSize int ) []byte {

    //1、求出分组余数

    padNum := blockSize - len(plaintText) % blockSize

    //2、将余数转换为字节切片、然后利用bytes.Repeat得出有该余数的大小的字节切片

    padByte := bytes.Repeat([]byte{byte(padNum)},padNum)

    //3、将补充的字节切片添加到原明文中

    plaintText = append(plaintText,padByte...)

    return plaintText

}

//aes加密

func encryptionText(plaintText []byte, key []byte) []byte {

    //1、创建aes对象

    block,err := aes.NewCipher(key)

    if err != nil {

        panic(err)

    }

    //2、明文补充

    newText := paddingPlaintText(plaintText,block.BlockSize())

    //3、创建cbc对象

    iv := []byte("12345678abcdefgh")

    blockMode := cipher.NewCBCEncrypter(block,iv)

    //4、加密

    blockMode.CryptBlocks(newText,newText)

    return newText

}

//解密后的去尾

func clearplaintText(plaintText []byte, blockSize int) []byte {

    //1、得到最后一个字节、并转换成整型数据

    padNum := int(plaintText[len(plaintText)-1])

    //2、截取明文字节中去掉得到的整型数据之前的数据、此处出错、没有用len-padNum

    newText := plaintText[:len(plaintText)-padNum]

    return newText

}

//aes解密

func deCryptionText(crypherText []byte, key []byte ) []byte {

    //1、创建aes对象

    block, err := aes.NewCipher(key)

    if err != nil {

        panic(err)

    }

    //2、创建cbc对象

    iv := []byte("12345678abcdefgh")

    blockMode := cipher.NewCBCDecrypter(block,iv)

    //3、解密

    blockMode.CryptBlocks(crypherText,crypherText)

    //4、去尾

    newText := clearplaintText(crypherText,block.BlockSize())

    return newText

}

func main(){

    //需要进行加密的明文

    plaintText := []byte("CBC--密文没有规律、经常使用的加密方式,最后一个分组需要填充,需要初始化向量")

    //密钥Key的长度需要与分组长度相同、且加密解密的密钥相同

    key := []byte("12345678abcdefgh")

    //调用加密函数

    cipherText := encryptionText(plaintText,key)

    //调用解密函数

    newPlaintText := deCryptionText(cipherText,key)

    fmt.Println("解密后",string(newPlaintText))

}

//aes--ctr加密

func encryptionCtrText(plaintText []byte, key []byte) []byte {

    //1、创建aes对象

    block,err := aes.NewCipher(key)

    if err != nil {

        panic(err)

    }

    //2、创建ctr对象,虽然ctr模式不需要iv,但是go中使用ctr时还是需要iv

    iv := []byte("12345678abcdefgh")

    stream := cipher.NewCTR(block,iv)

    stream.XORKeyStream(plaintText,plaintText)

    return plaintText

}

func main() {

//aes--ctr加密解密、调用两次即为解密、因为加密解密函数相同stream.XORKeyStream

    ctrcipherText := encryptionCtrText(plaintText, key)

    ctrPlaintText := encryptionCtrText(ctrcipherText,key)

    fmt.Println("aes解密后", string(ctrPlaintText))

}

英文单词:

明文:plaintext     密文:ciphertext   填充:padding/fill    去掉clear  加密Encryption  解密Decryption

8. 如何用Java进行3DES加密解密

这里是例子,直接拿来用就可以了。
package com.nnff.des;

import java.security.Security;

import javax.crypto.Cipher;
import javax.crypto.SecretKey;
import javax.crypto.spec.SecretKeySpec;

/*字符串 DESede(3DES) 加密
* ECB模式/使用PKCS7方式填充不足位,目前给的密钥是192位
* 3DES(即Triple DES)是DES向AES过渡的加密算法(1999年,NIST将3-DES指定为过渡的
* 加密标准),是DES的一个更安全的变形。它以DES为基本模块,通过组合分组方法设计出分组加
* 密算法,其具体实现如下:设Ek()和Dk()代表DES算法的加密和解密过程,K代表DES算法使用的
* 密钥,P代表明文,C代表密表,这样,
* 3DES加密过程为:C=Ek3(Dk2(Ek1(P)))
* 3DES解密过程为:P=Dk1((EK2(Dk3(C)))
* */
public class ThreeDes {

/**
* @param args在java中调用sun公司提供的3DES加密解密算法时,需要使
* 用到$JAVA_HOME/jre/lib/目录下如下的4个jar包:
*jce.jar
*security/US_export_policy.jar
*security/local_policy.jar
*ext/sunjce_provider.jar
*/

private static final String Algorithm = "DESede"; //定义加密算法,可用 DES,DESede,Blowfish
//keybyte为加密密钥,长度为24字节
//src为被加密的数据缓冲区(源)
public static byte[] encryptMode(byte[] keybyte,byte[] src){
try {
//生成密钥
SecretKey deskey = new SecretKeySpec(keybyte, Algorithm);
//加密
Cipher c1 = Cipher.getInstance(Algorithm);
c1.init(Cipher.ENCRYPT_MODE, deskey);
return c1.doFinal(src);//在单一方面的加密或解密
} catch (java.security.NoSuchAlgorithmException e1) {
// TODO: handle exception
e1.printStackTrace();
}catch(javax.crypto.NoSuchPaddingException e2){
e2.printStackTrace();
}catch(java.lang.Exception e3){
e3.printStackTrace();
}
return null;
}

//keybyte为加密密钥,长度为24字节
//src为加密后的缓冲区
public static byte[] decryptMode(byte[] keybyte,byte[] src){
try {
//生成密钥
SecretKey deskey = new SecretKeySpec(keybyte, Algorithm);
//解密
Cipher c1 = Cipher.getInstance(Algorithm);
c1.init(Cipher.DECRYPT_MODE, deskey);
return c1.doFinal(src);
} catch (java.security.NoSuchAlgorithmException e1) {
// TODO: handle exception
e1.printStackTrace();
}catch(javax.crypto.NoSuchPaddingException e2){
e2.printStackTrace();
}catch(java.lang.Exception e3){
e3.printStackTrace();
}
return null;
}

//转换成十六进制字符串
public static String byte2Hex(byte[] b){
String hs="";
String stmp="";
for(int n=0; n<b.length; n++){
stmp = (java.lang.Integer.toHexString(b[n]& 0XFF));
if(stmp.length()==1){
hs = hs + "0" + stmp;
}else{
hs = hs + stmp;
}
if(n<b.length-1)hs=hs+":";
}
return hs.toUpperCase();
}
public static void main(String[] args) {
// TODO Auto-generated method stub
//添加新安全算法,如果用JCE就要把它添加进去
Security.addProvider(new com.sun.crypto.provider.SunJCE());
final byte[] keyBytes = {0x11, 0x22, 0x4F, 0x58,
(byte)0x88, 0x10, 0x40, 0x38, 0x28, 0x25, 0x79, 0x51,
(byte)0xCB,
(byte)0xDD, 0x55, 0x66, 0x77, 0x29, 0x74,
(byte)0x98, 0x30, 0x40, 0x36,
(byte)0xE2
}; //24字节的密钥
String szSrc = "This is a 3DES test. 测试";
System.out.println("加密前的字符串:" + szSrc);
byte[] encoded = encryptMode(keyBytes,szSrc.getBytes());
System.out.println("加密后的字符串:" + new String(encoded));

byte[] srcBytes = decryptMode(keyBytes,encoded);
System.out.println("解密后的字符串:" + (new String(srcBytes)));
}
}

9. 1、对称加密算法

指加密和解密使用相同密钥的加密算法。对称加密算法用来对敏感数据等信息进顷弊指行加密,常用的算法包括RC4、DES、3DES、AES、DESX、Blowfish、ChaCha20、RC5、RC6。前3种算法被认为是不安全的,通常禁止使用。

国内:SM1、SM4、ZUC

国际:DES、3DES、AES

说明:SM1的128位保密强度和性能与AES相当,SM4的128位已升级为国际标准

块密码算法:DES、3DES、AES

流密码算法:RC4

SM1:对称加密算法,加密强度为128位,采用硬件实现; 算法不公开 ,只能通过相关安全产品进行使用。

SM4:对称算法,随WAPI标准一起公布,可使用软件实现,加密强度为128位。

SM4分组密码算法是我国自主设计的分组对称密码算法,用于实现数据的加密/解密运算,以保证数据和信息的机密性。要保证一个对称密码算法的安全性的基本条件是其具备足够的密钥长度,SM4算法与AES算法具有相同的密钥长度分组长度128比特,因此在安全性上高于3DES算法。

DES(Data Encryption Standard) :数据加密标准,速度较快,适用于加密 大量数据 的场合。

3DES(Triple DES) :是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高。

AES(Advanced Encryption Standard) :高级加密标准,是下一代的加密算法标准,速度快,安全级别高;

ECB(Electronic Codebook)、特点:运算快速,支持并行处理,需要填充、说明:不推荐使用

CBC (Cipher Block Chaining)、特点:支持并行处理,需要填充、说明:推荐使用

CFB(Cipher Feedback)、特点:支持并行处理,不需要填充、说明:不推荐使用

OFB(Output Feedback)、特点:迭代运算使用流密码模式,不需要填充、说明:不推荐使用

CTR (Counter)、特点:迭代运算使用流密码模式,支持并行处理,不需要填充、说明:推荐使用

XTS(XEX-based tweaked-codebook)、特点:不需要填充、说明:用于本地硬盘存储解决方案中

填充标准:明文长度必须是分组长度的倍数,如雀配卜哗不是倍数,则必须有填充机制

PKCS#7填充:可处理的分组长度是1到255个字节

AES算法使用标准,比如:AES-128-CBC-PKCS#7,其中秘钥长度128,分组模式CBC,填充标准PKCS#7,AES算法默认分组128bit

阅读全文

与3desecb算法相关的资料

热点内容
程序员怎么升职 浏览:241
图形化命令按钮vb 浏览:985
vcu盘加密怎么设置 浏览:412
如何加密备份微信聊天记录 浏览:527
安卓手机如何模拟键盘 浏览:930
查看dns地址命令 浏览:767
android录屏工具 浏览:840
成都互动直播系统源码 浏览:955
usb蓝牙android 浏览:409
服务器显示error1什么意思 浏览:710
python代码精简 浏览:459
文件加密了怎么找到了 浏览:195
jellyfin插件怎么选择主服务器 浏览:839
asp用户注册源码 浏览:48
什么是照片压缩文件 浏览:393
java调用js代码 浏览:981
昆山市民app怎么修改身份信息 浏览:779
php登陆次数 浏览:746
python字符转成数字 浏览:824
海川用的是什么服务器 浏览:378