导航:首页 > 源码编译 > 数据结构与算法分析c语言描述答案

数据结构与算法分析c语言描述答案

发布时间:2023-09-15 22:47:57

❶ 急需数据结构C语言版(清华大学出版社)的期末考试试题及答案

《数据结构》期末考试试卷( A )

一、 选择题(每小题2分,共24分)
1.计算机识别、存储和加工处理的对象被统称为( A )
A.数据 B.数据元素
C.数据结构 D.数据类型
2.栈和队列都是( A )
A.限制存取位置的线性结构 B.顺序存储的线性结构
C.链式存储的线性结构 D.限制存取位置的非线性结构
3.链栈与顺序栈相比,比较明显的优点是( D )
A.插入操作更加方便 B.删除操作更加方便
C.不会出现下溢的情况 D.不会出现上溢的情况
4.采用两类不同存储结构的字符串可分别简称为( B )
A.主串和子串 B.顺序串和链串
C.目标串和模式串 D.变量串和常量串
5. 一个向量第一个元素的存储地址是100,每个元素的长度为2,则第5个元素的地址是:B
A. 110 B .108
C. 100 D. 120
6.串是一种特殊的线性表,其特殊性体现在:B
A.可以顺序存储 B .数据元素是一个字符
C. 可以链接存储 D. 数据元素可以是多个字符
7.设高度为h的二叉树上只有度为0和度为2的结点,则此类二叉树中所包含的结点数至少为: C
A. 2h B .2h-1
C. 2h+1 D. h+1
软件开发网
8.树的基本遍历策略可分为先根遍历和后根遍历;二叉树的基本遍历策略可分为先序遍历、中序遍历和后序遍历。这里,我们把 由树转化得到的二叉树叫做这棵树对应的二叉树。下列结论哪个正确? A
A. 树的先根遍历序列与其对应的二叉树的先序遍历序列相同
B .树的后根遍历序列与其对应的二叉树的后序遍历序列相同
C. 树的先根遍历序列与其对应的二叉树的中序遍历序列相同
D. 以上都不对
9.一个有n个顶点的无向图最多有多少边?C
A. n B .n(n-1)
C. n(n-1)/2 D. 2n
10.在一个图中,所有顶点的度数之和等于所有边数的多少倍?C
A. 1/2 B .1
C. 2 D. 4
11.当在二叉排序树中插入一个新结点时,若树中不存在与待插入结点的关键字相同的结点,且新结点的关键字小于根结点的关键字,则新结点将成为( A )
A.左子树的叶子结点 B.左子树的分支结点
C.右子树的叶子结点 D.右子树的分支结点
软件开发网
12.对于哈希函数H(key)=key%13,被称为同义词的关键字是( D )
A.35和41 B.23和39
C.15和44 D.25和51
二、已知某棵二叉树的前序遍历结果为A,B,D,E,G,C,F,H,I,J,其中中序遍历的结果为D,B,G,E,A,H,F,I,J,C。请画出二叉的具体结构。(注意要写出具体步骤)(10分)
原理见课本128页

三、有图如下,请写出从顶点c0出发的深度优先及宽度优先遍历的结果。(10分)
深度优先;C0-C1-C3-C4-C5-C2
宽度优先:C0-C1-C2-C3-C4-C5
四、有图如下,按Kruskal算法求出其最小生成树。要求写出完整的步骤。(10分)
原理见课本250页

五、给定线性表(12,23,45,66,76,88,93,103,166),试写出在其上进行二分查找关键字值12,93,166的过程。并写出二分查找的算法。(20分)
0 1 2 3 4 5 6 7 8
12 23 45 66 76 88 93 103 166
过程:
mid=(0+8)/2=4
high=3,low=0 mid=1
high=0,low=0 mid=0(找到12)
high=8,low=5,mid=6(找到93)
high=8,low=7,mid=7
high=8 low=8 mid=8
算法:见课本84页上

六、知单链表的结点结构为
Data next
下列算法对带头结点的单链表L进行简单选择排序,使得L中的元素按值从小到大排列。
请在空缺处填入合适的内容,使其成为完整的算法。 (可用文字说明该算法的基本思想及执行的过程,10分)
void SelectSort(LinkedList L)
{
LinkedList p,q,min;
DataType rcd;
p= (1) ;
while(p!=NULL) {
min=p;
q=p->next;
while(q!=NULL){
if( (2) )min=q;
q=q->next;
}
if( (3) ){
rcd=p->data;
p->data=min->data;
min->data=rcd;
}
(4) ;
}
}
本题不会。嘿嘿。。。。
七、一个完整的算法应该具有哪几个基本性质?分别简要说明每一性质的含意。(5分)
输入:
四个基本性质:1.输入:有零个或多个有外部提供的量作为算法的输入
2:输出:算法产生至少一个量作为输出
3.:确定性:组成算法的每条指令是清晰的,无歧异的。
4.:有限性:算法中每条指令的执行次数是有限的,执行每条指令的时间也是有限的

八、何谓队列的"假溢"现象?如何解决?(5分)
队列的假溢现象是指数组实现的顺序队列中,队尾指针已到达数组的下表上界产生上溢而队头指针之前还有若干 空间闲置的现象。解决的办法之一是利用循环队列技术使数组空间的首尾相连。

九、说明并比较文件的各种物理结构。(6分)

❷ c语言数据结构(考题,测试你的能力)--编写源代码

P88 稀疏矩阵十字链表相加算法如下:
/*假设ha为A稀疏矩阵十字链表的头指针,hb为B稀疏矩阵十字链表的头指针*/
#include<stdio.h>
#define maxsize 100
struct linknode
{ int i,j;
struct linknode *cptr,*rptr;
union vnext
{ int v;
struct linknode *next;} k;
};

struct linknode creatlindmat( ) /*建立十字链表*/
{ int x, m, n, t, s, i, j, k;
struct linknode *p , *q, *cp[maxsize],*hm;
printf("请输入稀疏矩阵的行、列数及非零元个数\n");
scanf("%d%d%d",&m,&n,&t);
if (m>n) s=m; else s=n;
hm=(struct linknode*)malloc(sizeof(struct linknode)) ;
hm->i=m; hm->j=n;
cp[0]=hm;
for (i=1; i<=s;i++)
{ p=(struct linknode*)malloc(sizeof(struct linknode)) ;
p->i=0; p->j=0;
p->rptr=p; p->cptr=p;
cp[i]=p;
cp[i-1]->k.next=p;
}
cp[s]->k.next=hm;
for( x=1;x<=t;x++)
{ printf("请输入一个三元组(i,j,v)\n");
scanf("%d%d%d",&i,&j,&k);
p=(struct linknode*)malloc(sizeof(struct linknode));
p->i=i; p->j=j; p->k.v=k;
/*以下是将p插入到第i行链表中 */
q=cp[i];
while ((q->rptr!=cp[i]) &&( q->rptr->j<j))
q=q->rptr;
p->rptr=q->rptr;
q->rptr=p;
/*以下是将P插入到第j列链表中*/
q=cp[j];
while((q->cptr!=cp[j]) &&( q->cptr->i<i))
q=q->cptr;
p->cptr=q->cptr;
q->cptr=p;
}
return hm;
}
/* ha和hb表示的两个稀疏矩阵相加,相加的结果放入ha中*/
struct linknode *matadd(struct linknode *ha, struct linknode *hb)
{ struct linknode *pa, *pb, *qa, *ca,*cb,*p,*q;
struct linknode *hl[maxsize];
int i , j, n;
if((ha->i!=hb->i)||(ha->j!=hb->j))
printf("矩阵不匹配,不能相加\n");
else
{ p=ha->k.next; n=ha->j;
for (i=1;i<=n; i++)
{ hl[i]=p;
p=p->k.next;
}
ca=ha->k.next; cb=hb->k.next;
while(ca->i==0)
{pa=ca->rptr; pb=cb->rptr;
qa=ca;
while(pb->j!=0)
{ if((pa->j<pb->j)&&(pa->j!=0))
{ qa=pa; pa=pa->rptr;}
else if ((pa->j>pb->j)||(pa->j==0)) /*插入一个结点*/
{ p=(struct linknode*)malloc(sizeof(struct linknode));
p->i=pb->i; p->j=pb->j;
p->k.v=pb->k.v;
qa->rptr=p; p->rptr=pa;
qa=p; pb=pb->rptr;
j=p->j; q=hl[j]->cptr;
while((q->i<p->i)&&(q->i!=0))
{ hl[j]=q; q=hl[j]->cptr;}
hl[j]->cptr=p; p->cptr=q;
hl[j]=p;
}
else
{pa->k.v=pa->k.v+pb->k.v;
if(pa->k.v==0) /*删除一个结点*/
{ qa->rptr=pa->rptr;
j=pa->j; q=hl[j]->cptr;
while (q->i<pa->i)
{hl[j]=q; q=hl[j]->cptr;}
hl[j]->cptr=q->cptr;
pa=pa->rptr; pb=pb->rptr;
free(q);
}
else
{ qa=pa; pa=pa->rptr;
pb=pb->rptr;
}
}
}
ca=ca->k.next; cb=cb->k.next;
}
}
return ha;
}
void print(struct linknode *ha) /*输出十字链表*/
{ struct linknode *p,*q;
p=ha->k.next;
while(p->k.next!=ha)
{ q=p->rptr;
while(q->rptr!=p)
{ printf("%3d%3d%3d\t",q->i,q->j,q->k.v);
q=q->rptr;
}
if(p!=q)
printf("%3d%3d%3d",q->i,q->j,q->k.v);
printf("\n");
p=p->k.next;
}
q=p->rptr;
while(q->rptr!=p)
{ printf("%3d%3d%3d\t",q->i,q->j,q->k.v);
q=q->rptr;
}
if(p!=q)
printf("%3d%3d%3d",q->i,q->j,q->k.v);
printf("\n");
}

void main()
{
struct linknode *ha=NULL,*hb=NULL,*hc=NULL;
ha=creatlindmat( ); /*生成一个十字链表ha*/
hb=creatlindmat( ); /*生成另一个十字链表hb*/
printf("A:\n"); /*输出十字链表ha*/
print(ha);printf("\n");
printf("B:\n"); /*输出十字链表hb*/
print(hb);printf("\n");
hc=matadd(ha,hb); /*十字链表相加*/
printf("A+B:\n"); /*输出相加后的结果*/
print(hc);printf("\n");
}

P94 数据类型描述如下:
#define elemtype char
struct node1
{ int atom;
struct node1 *link;
union
{
struct node1 *slink;
elemtype data;
} ds;
}

P95 数据类型描述如下:
struct node2
{ elemtype data;
struct node2 *link1,*link2;
}

P96 求广义表的深度depth(LS)
int depth(struct node1 *LS)
{
int max=0,dep;
while(LS!=NULL)
{ if(LS->atom==0) //有子表
{ dep=depth(LS->ds.slink);
if(dep>max) max=dep;
}
LS=LS->link;
}
return max+1;
}

P96 广义表的建立creat(LS)
void creat(struct node1 *LS)
{
char ch;
scanf("%c",&ch);
if(ch=='#')
LS=NULL;
else if(ch=='(')
{LS=(struct node*)malloc(sizeof(struct node));
LS->atom=0;
creat(LS->ds.slink);
}
else
{ LS=(struct node*)malloc(sizeof(struct node));
LS->atom=1;
LS->ds.data=ch;
}
scanf("%c",&ch);
if(LS==NULL);
else if(ch==',')
creat(LS->link);
else if((ch==')')||(ch==';'))
LS->link=NULL;
}

P97 输出广义表print(LS)
void print(struct node1 *LS)
{
if(LS->atom==0)
{
printf("(");
if(LS->ds.slink==NULL)
printf("#");
else
print(LS->ds.slink);
}
else
printf("%c ",LS->ds.data);
if(LS->atom==0)
printf(")");
if(LS->link!=NULL)
{
printf(";");
print(LS->link);
}
}

P98 该算法的时间复杂度为O(n)。整个完整程序如下:
#include<stdio.h>
#define elemtype char
struct node1
{ int atom;
struct node1 *link;
union
{
struct node1 *slink;
elemtype data;
} ds;
};

void creat(struct node1 LS) /*建立广义表的单链表*/
{
char ch;
scanf("%c",&ch);
if(ch=='#')
LS=NULL;
else if(ch=='(')
{LS=(struct node1*)malloc(sizeof(struct node1));
LS->atom=0;
creat(LS->ds.slink);
}
else
{ LS=(struct node1*)malloc(sizeof(struct node1));
LS->atom=1;
LS->ds.data=ch;
}
scanf("%c",&ch);
if(LS==NULL);
else if(ch==',')
creat(LS->link);
else if((ch==')')||(ch==';'))
LS->link=NULL;
}
void print(struct node1 LS) /*输出广义单链表*/
{
if(LS->atom==0)
{
printf("(");
if(LS->ds.slink==NULL)
printf("#");
else
print(LS->ds.slink);
}
else
printf("%c",LS->ds.data);
if(LS->atom==0)
printf(")");
if(LS->link!=NULL)
{
printf(";");
print(LS->link);
}
}
int depth(struct node1 LS) /*求广义表的深度*/
{
int max=0;
while(LS!=NULL)
{ if(LS->atom==0)
{ int dep=depth(LS->ds.slink);
if(dep>max) max=dep;
}
LS=LS->link;
}
return max+1;
}
main()
{ int dep;
struct node1 *p=NULL;
creat(p); /*建立广义表的单链表*/
print(p); /*输出广义单链表*/
dep=depth(p); /*求广义表的深度*/
printf("%d\n",dep);
}

第六章 树
P109 二叉链表的结点类型定义如下:
typedef struct btnode
{ anytype data;
struct btnode *Lch,*Rch;
}tnodetype;

P109 三叉链表的结点类型定义如下:
typedef struct btnode3
{ anytype data;
struct btnode *Lch,*Rch,*Parent ;
}tnodetype3;

P112 C语言的先序遍历算法:
void preorder (tnodetype *t)
/*先序遍历二叉树算法,t为指向根结点的指针*/
{ if (t!=NULL)
{printf("%d ",t->data);
preorder(t->lch);
preorder(t->rch);
}
}

P113 C语言的中序遍历算法:
void inorder(tnodetype *t)
/*中序遍历二叉树算法,t为指向根结点的指针*/
{
if(t!=NULL)
{inorder(t->lch);
printf("%d ",t->data);
inorder(t->rch);
}
}

P113 C语言的后序遍历算法:
void postorder(tnodetype *t)
/*后序遍历二叉树算法,t为指向根结点的指针*/
{
if(t!=NULL)
{ postorder(t->lch);
postorder(t->rch);
printf("%d ",t->data);
}
}

P114 如果引入队列作为辅助存储工具,按层次遍历二叉树的算法可描述如下:
void levelorder(tnodetype *t)
/*按层次遍历二叉树算法,t为指向根结点的指针*/
{tnodetype q[20]; /*辅助队列*/
front=0;
rear=0; /*置空队列*/
if (t!=NULL)
{ rear++;
q[rear]=t; /*根结点入队*/
}
while (front!=rear)
{ front++;
t=q [front];
printf ("%c\n",t->data);
if (t->lch!=NULL) /*t的左孩子不空,则入队*/
{ rear++;
q [rear]=t->lch;
}
if (t->rch!=NULL) /*t的右孩子不空,则入队*/
{ rear++;
q [rear]=t->rch;
}
}
}

P115 以中序遍历的方法统计二叉树中的结点数和叶子结点数,算法描述为:
void inordercount (tnodetype *t)
/*中序遍历二叉树,统计树中的结点数和叶子结点数*/
{ if (t!=NULL)
{ inordercount (t->lch); /*中序遍历左子树*/
printf ("%c\n",t->data); /*访问根结点*/
countnode++; /*结点计数*/
if ((t->lch==NULL)&&(t->rch==NULL))
countleaf++; /*叶子结点计数*/
inordercount (t->rch); /*中序遍历右子树*/
}
}

P115 可按如下方法计算一棵二叉树的深度:
void preorderdeep (tnodetype *t,int j)
/*先序遍历二叉树,并计算二叉树的深度*/
{ if (t!=NULL)
{ printf ("%c\n",t->data); /*访问根结点*/
j++;
if (k<j) k=j;
preorderdeep (t->lch,j); /*先序遍历左子树*/
preorderdeep (t->rch,j); /*先序遍历右子树*/
}
}

P117 线索二叉树的结点类型定义如下:
struct nodexs
{anytype data;
struct nodexs *lch, *rch;
int ltag,rtag; /*左、右标志域*/
}

P117 中序次序线索化算法
void inorderxs (struct nodexs *t)
/*中序遍历t所指向的二叉树,并为结点建立线索*/
{ if (t!=NULL)
{ inorderxs (t->lch);
printf ("%c\n",t->data);
if (t->lch!=NULL)
t->ltag=0;
else { t->ltag=1;
t->lch=pr;
} /*建立t所指向结点的左线索,令其指向前驱结点pr*/
if (pr!=NULL)
{ if (pr->rch!=NULL)
pr->rtag=0;
else { pr->rtag=1;
pr->rch=p;
}
} /*建立pr所指向结点的右线索,令其指向后继结点p*/
pr=p;
inorderxs (t->rch);
}
}

P118 在中根线索树上检索某结点的前驱结点的算法描述如下:
struct nodexs * inpre (struct nodexs *q)
/*在中根线索树上检索q所指向的结点的前驱结点*/
{ if (q->ltag==1)
p=q->lch;
else { r=q->lch;
while (r->rtag!=1)
r=r->rch;
p=r;
}
return (p);
}

P119 在中根线索树上检索某结点的后继结点的算法描述如下:
struct nodexs * insucc (struct nodexs *q)
/*在中根线索树上检索q所指向的结点的后继结点*/
{ if (q->rtag==1)
p=q->rch;
else { r=q->rch;
while (r->ltag!=1)
r=r->lch;
p=r;
}
return (p);
}

P120 算法程序用C语言描述如下:
void sortBT(BT *t,BT *s) /*将指针s所指的结点插入到以t为根指针的二叉树中*/
{ if (t==NULL) t=s; /*若t所指为空树,s所指结点为根*/
else if (s->data < t->data)
sortBT(t->lch,s); /*s结点插入到t的左子树上去*/
else
sortBT(t->rch,s); /*s结点插入到t的右子树上去*/
}

P121 二叉排序树结点删除算法的C语言描述如下:
void delnode(bt,f,p)
/*bt为一棵二叉排序树的根指针,p指向被删除结点,f指向其双亲*/
/*当p=bt时f为NULL*/
{ fag=0; /*fag=0时需修改f指针信息,fag=1时不需修改*/
if (p->lch==NULL)
s=p->rch; /*被删除结点为叶子或其左子树为空*/
else if (p->rch==NULL)
s=p->lch;
else { q=p; /*被删除结点的左、右子树均非空*/
s=p->lch;
while (s->rch!=NULL)
{ q=s;
s=s->rch;
} /*寻找s结点*/
if (q=p)
q->lch=s->lch;
else q->rch=s->lch;
p->data=s->data; /*s所指向的结点代替被删除结点*/
DISPOSE(s);
Fag=1;
}
if (fag=0) /*需要修改双亲指针*/
{ if (f=NULL)
bt=s; /*被删除结点为根结点*/
else if (f->lch=p)
f->lch=s;
else f->rch=s;
DISPOSE(p); /*释放被删除结点*/
}
}

第七章 图
P134 用邻接矩阵表示法表示图,除了存储用于表示顶点间相邻关系的邻接矩阵外,通常还需要用一个顺序表来存储顶点信息。其形式说明如下:
# define n 6 /*图的顶点数*/
# define e 8 /*图的边(弧)数*/
typedef char vextype; /*顶点的数据类型*/
typedef float adjtype; /*权值类型*/
typedef struct
{vextype vexs[n];
adjtype arcs[n][n];
}graph;

P135 建立一个无向网络的算法。
CREATGRAPH(ga) /*建立无向网络*/
Graph * ga;
{
int i,j,k;
float w;
for(i=0;i<n;i++ )
ga ->vexs[i]=getchar(); /*读入顶点信息,建立顶点表*/
for(i=0;i<n;i++ )
for(j=0;j<n;j++)
ga ->arcs[i][j]=0; /*邻接矩阵初始化*/
for(k=0;k<e;k++) /*读入e条边*/
(scanf("%d%d%f",&I,&j,&w); /*读入边(vi,vj)上的权w */
ga ->arcs[i][j]=w;
ga - >arcs[j][i]=w;
}
} /*CREATGRAPH*/

P136 邻接表的形式说明及其建立算法:
typedef struct node
{int adjvex; /*邻接点域*/
struct node * next; /*链域*/
}edgenode; /*边表结点*/
typedef struct
{vextype vertex; /*顶点信息*/
edgenode link; /*边表头指针*/
}vexnode; /*顶点表结点*/
vexnode ga[n];

CREATADJLIST(ga) /*建立无向图的邻接表*/
Vexnode ga[ ];
{int i,j,k;
edgenode * s;
for(i=o;i<n;i++= /*读入顶点信息*/
(ga[i].vertex=getchar();
ga[i].1ink=NULL; /*边表头指针初始化*/
}
for(k=0;k<e;k++= /*建立边表*/
{scanf("%d%d",&i,&j); /*读入边(vi , vj)的顶点对序号*/
s=malloc(sizeof(edgenode)); /*生成邻接点序号为j的表结点*s */
s-> adjvex=j;
s- - >next:=ga[i].Link;
ga[i].1ink=s; /*将*s插入顶点vi的边表头部*/
s=malloc(size0f(edgende)); /*生成邻接点序号为i的边表结点*s */
s ->adjvex=i;
s ->next=ga[j].1ink;
ga[j].1ink=s; /*将*s插入顶点vj的边表头部*/
}
} /* CREATADJLIST */

P139 分别以邻接矩阵和邻接表作为图的存储结构给出具体算法,算法中g、g1和visited为全程量,visited的各分量初始值均为FALSE。
int visited[n] /*定义布尔向量visitd为全程量*/
Graph g; /*图g为全程量*/

DFS(i) /*从Vi+1出发深度优先搜索图g,g用邻接矩阵表示*/
int i;
{ int j;
printf("node:%c\n" , g.vexs[i]); /*访问出发点vi+1 */
Visited[i]=TRUE; /*标记vi+l已访问过*/
for (j=0;j<n;j++) /*依次搜索vi+1的邻接点*/
if((g.arcs[i][j]==1) &&(! visited[j]))
DFS(j); /*若Vi+l的邻接点vj+l未曾访问过,则从vj+l出发进行深度优先搜索*/
} /*DFS*/
vexnode gl[n] /*邻接表全程量*/

DFSL(i) /*从vi+l出发深度优先搜索图g1,g1用邻接表表示*/
int i;
{ int j;
edgenode * p;
printf("node:%C\n" ,g1[i].vertex);
vistited[i]=TRUE;
p=g1[i].1ink; /*取vi+1的边表头指针*/
while(p !=NULL) /*依次搜索vi+l的邻接点*/
{
if(! Vistited[p ->adjvex])
DFSL(p - >adjvex); /*从vi+1的未曾访问过的邻接点出发进行深度优先搜索*/
p=p - >next; /*找vi+l的下一个邻接点*/
}
} /* DFSL */

P142 以邻接矩阵和邻接表作为图的存储结构,分别给出宽度优先搜索算法。
BFS(k) /*从vk+l出发宽度优先搜索图g,g用邻接矩阵表示,visited为访问标志向量*/
int k;
{ int i,j;
SETNULL(Q); /*置空队Q */
printf("%c\n",g.vexs[k]); /*访问出发点vk+l*x/
visited[k]=TRUE; /*标记vk+l已访问过*/
ENQUEUE(Q,K); /*已访问过的顶点(序号)入队列*/
While(!EMPTY(Q)) /*队非空时执行*/
{i=DEQUEUE(Q); /*队头元素序号出队列*/
for(j=0;j<n;j++)
if((g.arcs[i][j]==1)&&(! visited[j]))
{printf("%c\n" , g.vexs[j]); /*访问vi+l的未曾访问的邻接点vj+l */
visited[j]=TRUE;
ENQUEUE(Q,j); /*访问过的顶点入队*/
}
}
} /* BFS */
BFSL(k) /*从vk+l出发宽度优先搜索图g1,g1用邻接表表示*/
int k
{ int i;
edgenode * p;
SETNULL(Q);
printf("%c\n" , g1[k].vertex);
visited[k]=TRUE;
ENQUEUE(Q,k);
while(! EMPTY(Q));
{ i=DEQUEUE(Q);
p=g1[i].1ink /*取vi+l的边表头指针*/
while(p !=NULL) /*依次搜索vi+l的邻接点*/
{ if( ! visited[p - >adjvex]) /*访问vi+l的未访问的邻接点*/
{ printf{"%c\n" , g1[p - >adjvex].vertex};
visited[p - >adjvex]=TRUE;
ENQUEUE(Q,p - >adjvex); /*访问过的顶点入队*/
}
p=p - >next; /*找vi+l的下一个邻接点*/
}
}
} /*BFSL*/

P148 在对算法Prim求精之前,先确定有关的存储结构如下:
typdef struct
{Int fromvex,endvex; /*边的起点和终点*/
float length; /*边的权值*/
} edge;

float dist[n][n]; /*连通网络的带权邻接矩阵*/
edgeT[n-1]; /*生成树*/

P149 抽象语句(1)可求精为:
for(j=1;j<n;j++) /*对n-1个蓝点构造候选紫边集*/
{T[j-1].fromvex=1}; /*紫边的起点为红点*/
T[j-1].endvex=j+1; /*紫边的终点为蓝点*/
T[j-1].1ength=dist[0][j]; /*紫边长度*/
}

P149 抽象语句(3)所求的第k条最短紫边可求精为:
min=max; /*znax大于任何边上的权值*/
for (j=k;j<n-1;j++) /*扫描当前候选紫边集T[k]到T[n-2],找最短紫边*/
if(T[j].1ength<min)
{min=T[j].1ength;m=j; /*记录当前最短紫边的位置*/
}

P149 抽象语句(4)的求精:
e=T[m];T[m]=T[k];T[k]=e, /* T[k]和T[m]交换*/
v=T[kl.Endvex]; /* v是刚被涂红色的顶点*/

P149 抽象语句(5)可求精为:
for(j=k+1;j<n-1;j++) /*调整候选紫边集T[k+1]到T[n-2]*/
{d=dist[v-1][T[j].endvex-1]; /*新紫边的长度*/
if(d<T[j].1ength) /*新紫边的长度小于原最短紫边*/
{T[j].1ength=d;
T[j].fromvex=v; /*新紫边取代原最短紫边*/
}
}

P150 完整的算法:
PRIM() /*从第一个顶点出发构造连通网络dist的最小生成树,结果放在T中*/
{int j , k , m , v , min , max=l0000;
float d;
edge e;
for(j=1;j<n;j++) /*构造初始候选紫边集*/
{T[j-1].formvex=1; /*顶点1是第一个加入树中的红点*/
T[j-1].endvex=j+1;
T[j-1].length=dist[o][j];
}
for(k=0;k<n-1;k++) /*求第k条边*/
{min=max;
for(j=k;j<n-1;j++) /*在候选紫边集中找最短紫边*/
if(T[j].1ength<min)
{min=T[j].1ength;
m=j;
} /*T[m]是当前最短紫边*/
}
e=T[m];T[m]=T[k];T[k]=e; /*T[k]和T[m]交换后,T[k]是第k条红色树边*/
v=T[k].endvex ; /* v是新红点*/
for(j=k+1;j<n-1;j++) /*调整候选紫边集*/
{d=dist[v-1][T[j].endvex-1];
if(d<T[j].1ength);
{T[j].1ength=d;
T[j].fromvex=v;
}
}
} /* PRIM */

P151 Kruskl算法的粗略描述:
T=(V,φ);
While(T中所含边数<n-1)
{从E中选取当前最短边(u,v);
从E中删去边(u,v);
if((u,v)并入T之后不产生回路,将边(u,v)并入T中;
}

P153 迪杰斯特拉算法实现。算法描述如下:
#define max 32767 /*max代表一个很大的数*/
void dijkstra (float cost[][n],int v)
/*求源点v到其余顶点的最短路径及其长度*/
{ v1=v-1;
for (i=0;i<n;i++)
{ dist[i]=cost[v1][i]; /*初始化dist*/
if (dist[i]<max)
pre[i]=v;
else pre[i]=0;
}
pre[v1]=0;
for (i=0;i<n;i++)
s[i]=0; /*s数组初始化为空*/
s[v1]=1; /*将源点v归入s集合*/
for (i=0;i<n;i++)
{ min=max;
for (j=0;j<n;j++)
if (!s[j] && (dist[j]<min))
{ min=dist[j];
k=j;
} /*选择dist值最小的顶点k+1*/
s[k]=1; /*将顶点k+1归入s集合中*/
for (j=0;j<n;j++)
if (!s[j]&&(dist[j]>dist[k]+cost[k][j]))
{ dist[j]=dist[k]+cost[k][j]; /*修改 V-S集合中各顶点的dist值*/
pre[j]=k+1; /*k+1顶点是j+1顶点的前驱*/
}
} /*所有顶点均已加入到S集合中*/
for (j=0;j<n;j++) /*打印结果*/
{ printf("%f\n%d",dist[j],j+1;);
p=pre[j];
while (p!=0)
{ printf("%d",p);
p=pre[p-1];
}
}
}

P155 弗洛伊德算法可以描述为:
A(0)[i][j]=cost[i][j]; //cost为图的邻接矩阵
A(k)[i][j]=min{A(k-1) [i][j],A(k-1) [i][k]+A(k-1) [k][j]}
其中 k=1,2,…,n

P155 弗洛伊德算法实现。算法描述如下:
int path[n][n]; /*路径矩阵*/
void floyd (float A[][n],cost[][n])
{ for (i=0;i<n;i++) /*设置A和path的初值*/
for (j=0;j<n;j++)
{ if (cost[i][j]<max)
path[i][j]=j;
else { path[i][j]=0;
A[i][j]=cost[i][j];
}
}
for (k=0;k<n;k++)
/*做n次迭代,每次均试图将顶点k扩充到当前求得的从i到j的最短路径上*/
for (i=0;i<n;i++)
for (j=0;j<n;j++)
if (A[i][j]>(A[i][k]+A[k]

❸ 清华大学严蔚敏数据结构题集完整答案(c语言版)

第一章 绪论
1.16
void print_descending(int x,int y,int z)//按从大到小顺序输出三个数
{
scanf("%d,%d,%d",&x,&y,&z);
if(x<y) x<->y; //<->为表示交换的双目运算符,以下同
if(y<z) y<->z;
if(x<y) x<->y; //冒泡排序
printf("%d %d %d",x,y,z);
}//print_descending
1.17
Status fib(int k,int m,int &f)//求k阶斐波那契序列的第m项的值f
{
int tempd;
if(k<2||m<0) return ERROR;
if(m<k-1) f=0;
else if (m==k-1) f=1;
else
{
for(i=0;i<=k-2;i++) temp[i]=0;
temp[k-1]=1; //初始化
for(i=k;i<=m;i++) //求出序列第k至第m个元素的值
{
sum=0;
for(j=i-k;j<i;j++) sum+=temp[j];
temp[i]=sum;
}
f=temp[m];
}
return OK;
}//fib
分析:通过保存已经计算出来的结果,此方法的时间复杂度仅为O(m^2).如果采用递归编程(大多数人都会首先想到递归方法),则时丛盯间复杂度将高达O(k^m).
1.18
typedef struct{
char *sport;
enum{male,female} gender;
char schoolname; //校名为'A','B','C','D'或'E'
char *result;
int score;
} resulttype;
typedef struct{
int malescore;
int femalescore;
int totalscore;
} scoretype;
void summary(resulttype result[ ])//求各校的男女总分和团体总圆笑分,假设结果已经储存在result[ ]数组中
{
scoretype score ;
i=0;
while(result[i].sport!=NULL)
{
switch(result[i].schoolname)
{
case 'A':
score[ 0 ].totalscore+=result[i].score;
if(result[i].gender==0) score[ 0 ].malescore+=result[i].score;
else score[ 0 ].femalescore+=result[i].score;
break;
case 'B':
score .totalscore+=result[i].score;
if(result[i].gender==0) score .malescore+=result[i].score;
else score .femalescore+=result[i].score;
break;
…… …… ……
}
i++;
}
for(i=0;i<5;i++)
{
printf("School %d:\n",i);
printf("Total score of male:%d\n",score[i].malescore);
printf("Total score of female:%d\n",score[i].femalescore);
printf("Total score of all:%d\n\橘郑含n",score[i].totalscore);
}
}//summary
1.19
Status algo119(int a[ARRSIZE])//求i!*2^i序列的值且不超过maxint
{
last=1;
for(i=1;i<=ARRSIZE;i++)
{
a[i-1]=last*2*i;
if((a[i-1]/last)!=(2*i)) reurn OVERFLOW;
last=a[i-1];
return OK;
}
}//algo119
分析:当某一项的结果超过了maxint时,它除以前面一项的商会发生异常.
1.20
void polyvalue()
{
float ad;
float *p=a;
printf("Input number of terms:");
scanf("%d",&n);
printf("Input the %d coefficients from a0 to a%d:\n",n,n);
for(i=0;i<=n;i++) scanf("%f",p++);
printf("Input value of x:");
scanf("%f",&x);
p=a;xp=1;sum=0; //xp用于存放x的i次方
for(i=0;i<=n;i++)
{
sum+=xp*(*p++);
xp*=x;
}
printf("Value is:%f",sum);
}//polyvalue

第二章 线性表
2.10
Status DeleteK(SqList &a,int i,int k)//删除线性表a中第i个元素起的k个元素
{
if(i<1||k<0||i+k-1>a.length) return INFEASIBLE;
for(count=1;i+count-1<=a.length-k;count++) //注意循环结束的条件
a.elem[i+count-1]=a.elem[i+count+k-1];
a.length-=k;
return OK;
}//DeleteK
2.11
Status Insert_SqList(SqList &va,int x)//把x插入递增有序表va中
{
if(va.length+1>va.listsize) return ERROR;
va.length++;
for(i=va.length-1;va.elem[i]>x&&i>=0;i--)
va.elem[i+1]=va.elem[i];
va.elem[i+1]=x;
return OK;
}//Insert_SqList
2.12
int ListComp(SqList A,SqList B)//比较字符表A和B,并用返回值表示结果,值为正,表示A>B;值为负,表示A<B;值为零,表示A=B
{
for(i=1;A.elem[i]||B.elem[i];i++)
if(A.elem[i]!=B.elem[i]) return A.elem[i]-B.elem[i];
return 0;
}//ListComp
2.13
LNode* Locate(LinkList L,int x)//链表上的元素查找,返回指针
{
for(p=l->next;p&&p->data!=x;p=p->next);
return p;
}//Locate
2.14
int Length(LinkList L)//求链表的长度
{
for(k=0,p=L;p->next;p=p->next,k++);
return k;
}//Length
2.15
void ListConcat(LinkList ha,LinkList hb,LinkList &hc)//把链表hb接在ha后面形成链表hc
{
hc=ha;p=ha;
while(p->next) p=p->next;
p->next=hb;
}//ListConcat
2.16
见书后答案.
2.17
Status Insert(LinkList &L,int i,int b)//在无头结点链表L的第i个元素之前插入元素b
{
p=L;q=(LinkList*)malloc(sizeof(LNode));
q.data=b;
if(i==1)
{
q.next=p;L=q; //插入在链表头部
}
else
{
while(--i>1) p=p->next;
q->next=p->next;p->next=q; //插入在第i个元素的位置
}
}//Insert
2.18
Status Delete(LinkList &L,int i)//在无头结点链表L中删除第i个元素
{
if(i==1) L=L->next; //删除第一个元素
else
{
p=L;
while(--i>1) p=p->next;
p->next=p->next->next; //删除第i个元素
}
}//Delete
2.19
Status Delete_Between(Linklist &L,int mink,int maxk)//删除元素递增排列的链表L中值大于mink且小于maxk的所有元素
{
p=L;
while(p->next->data<=mink) p=p->next; //p是最后一个不大于mink的元素
if(p->next) //如果还有比mink更大的元素
{
q=p->next;
while(q->data<maxk) q=q->next; //q是第一个不小于maxk的元素
p->next=q;
}
}//Delete_Between
2.20
Status Delete_Equal(Linklist &L)//删除元素递增排列的链表L中所有值相同的元素
{
p=L->next;q=p->next; //p,q指向相邻两元素
while(p->next)
{
if(p->data!=q->data)
{
p=p->next;q=p->next; //当相邻两元素不相等时,p,q都向后推一步
}
else
{
while(q->data==p->data)
{
free(q);
q=q->next;
}
p->next=q;p=q;q=p->next; //当相邻元素相等时删除多余元素
}//else
}//while
}//Delete_Equal
2.21
void reverse(SqList &A)//顺序表的就地逆置
{
for(i=1,j=A.length;i<j;i++,j--)
A.elem[i]<->A.elem[j];
}//reverse
2.22
void LinkList_reverse(Linklist &L)//链表的就地逆置;为简化算法,假设表长大于2
{
p=L->next;q=p->next;s=q->next;p->next=NULL;
while(s->next)
{
q->next=p;p=q;
q=s;s=s->next; //把L的元素逐个插入新表表头
}
q->next=p;s->next=q;L->next=s;
}//LinkList_reverse
分析:本算法的思想是,逐个地把L的当前元素q插入新的链表头部,p为新表表头.
2.23
void merge1(LinkList &A,LinkList &B,LinkList &C)//把链表A和B合并为C,A和B的元素间隔排列,且使用原存储空间
{
p=A->next;q=B->next;C=A;
while(p&&q)
{
s=p->next;p->next=q; //将B的元素插入
if(s)
{
t=q->next;q->next=s; //如A非空,将A的元素插入
}
p=s;q=t;
}//while
}//merge1
2.24
void reverse_merge(LinkList &A,LinkList &B,LinkList &C)//把元素递增排列的链表A和B合并为C,且C中元素递减排列,使用原空间
{
pa=A->next;pb=B->next;pre=NULL; //pa和pb分别指向A,B的当前元素
while(pa||pb)
{
if(pa->data<pb->data||!pb)
{
pc=pa;q=pa->next;pa->next=pre;pa=q; //将A的元素插入新表
}
else
{
pc=pb;q=pb->next;pb->next=pre;pb=q; //将B的元素插入新表
}
pre=pc;
}
C=A;A->next=pc; //构造新表头
}//reverse_merge
分析:本算法的思想是,按从小到大的顺序依次把A和B的元素插入新表的头部pc处,最后处理A或B的剩余元素.
2.25
void SqList_Intersect(SqList A,SqList B,SqList &C)//求元素递增排列的线性表A和B的元素的交集并存入C中
{
i=1;j=1;k=0;
while(A.elem[i]&&B.elem[j])
{
if(A.elem[i]<B.elem[j]) i++;
if(A.elem[i]>B.elem[j]) j++;
if(A.elem[i]==B.elem[j])
{
C.elem[++k]=A.elem[i]; //当发现了一个在A,B中都存在的元素,
i++;j++; //就添加到C中
}
}//while
}//SqList_Intersect
2.26
void LinkList_Intersect(LinkList A,LinkList B,LinkList &C)//在链表结构上重做上题
{
p=A->next;q=B->next;
pc=(LNode*)malloc(sizeof(LNode));
while(p&&q)
{
if(p->data<q->data) p=p->next;
else if(p->data>q->data) q=q->next;
else
{
s=(LNode*)malloc(sizeof(LNode));
s->data=p->data;
pc->next=s;pc=s;
p=p->next;q=q->next;
}
}//while
C=pc;
}//LinkList_Intersect
2.27
void SqList_Intersect_True(SqList &A,SqList B)//求元素递增排列的线性表A和B的元素的交集并存回A中
{
i=1;j=1;k=0;
while(A.elem[i]&&B.elem[j])
{
if(A.elem[i]<B.elem[j]) i++;
else if(A.elem[i]>B.elem[j]) j++;
else if(A.elem[i]!=A.elem[k])
{
A.elem[++k]=A.elem[i]; //当发现了一个在A,B中都存在的元素
i++;j++; //且C中没有,就添加到C中
}
}//while
while(A.elem[k]) A.elem[k++]=0;
}//SqList_Intersect_True
2.28
void LinkList_Intersect_True(LinkList &A,LinkList B)//在链表结构上重做上题
{
p=A->next;q=B->next;pc=A;
while(p&&q)
{
if(p->data<q->data) p=p->next;
else if(p->data>q->data) q=q->next;
else if(p->data!=pc->data)
{
pc=pc->next;
pc->data=p->data;
p=p->next;q=q->next;
}
}//while
}//LinkList_Intersect_True
2.29
void SqList_Intersect_Delete(SqList &A,SqList B,SqList C)
{
i=0;j=0;k=0;m=0; //i指示A中元素原来的位置,m为移动后的位置
while(i<A.length&&j<B.length&& k<C.length)
{
if(B.elem[j]<C.elem[k]) j++;
else if(B.elem[j]>C.elem[k]) k++;
else
{
same=B.elem[j]; //找到了相同元素same
while(B.elem[j]==same) j++;
while(C.elem[k]==same) k++; //j,k后移到新的元素
while(i<A.length&&A.elem[i]<same)
A.elem[m++]=A.elem[i++]; //需保留的元素移动到新位置
while(i<A.length&&A.elem[i]==same) i++; //跳过相同的元素
}
}//while
while(i<A.length)
A.elem[m++]=A.elem[i++]; //A的剩余元素重新存储。
A.length=m;
}// SqList_Intersect_Delete
分析:先从B和C中找出共有元素,记为same,再在A中从当前位置开始, 凡小于same的
元素均保留(存到新的位置),等于same的就跳过,到大于same时就再找下一个same.
2.30
void LinkList_Intersect_Delete(LinkList &A,LinkList B,LinkList C)//在链表结构上重做上题
{
p=B->next;q=C->next;r=A-next;
while(p&&q&&r)
{
if(p->data<q->data) p=p->next;
else if(p->data>q->data) q=q->next;
else
{
u=p->data; //确定待删除元素u
while(r->next->data<u) r=r->next; //确定最后一个小于u的元素指针r
if(r->next->data==u)
{
s=r->next;
while(s->data==u)
{
t=s;s=s->next;free(t); //确定第一个大于u的元素指针s
}//while
r->next=s; //删除r和s之间的元素
}//if
while(p->data=u) p=p->next;
while(q->data=u) q=q->next;
}//else
}//while
}//LinkList_Intersect_Delete
2.31
Status Delete_Pre(CiLNode *s)//删除单循环链表中结点s的直接前驱
{
p=s;
while(p->next->next!=s) p=p->next; //找到s的前驱的前驱p
p->next=s;
return OK;
}//Delete_Pre
2.32
Status DuLNode_Pre(DuLinkList &L)//完成双向循环链表结点的pre域
{
for(p=L;!p->next->pre;p=p->next) p->next->pre=p;
return OK;
}//DuLNode_Pre
2.33
Status LinkList_Divide(LinkList &L,CiList &A,CiList &B,CiList &C)//把单链表L的元素按类型分为三个循环链表.CiList为带头结点的单循环链表类型.
{
s=L->next;
A=(CiList*)malloc(sizeof(CiLNode));p=A;
B=(CiList*)malloc(sizeof(CiLNode));q=B;
C=(CiList*)malloc(sizeof(CiLNode));r=C; //建立头结点
while(s)
{
if(isalphabet(s->data))
{
p->next=s;p=s;
}
else if(isdigit(s->data))
{
q->next=s;q=s;
}
else
{
r->next=s;r=s;
}
}//while
p->next=A;q->next=B;r->next=C; //完成循环链表
}//LinkList_Divide
2.34
void Print_XorLinkedList(XorLinkedList L)//从左向右输出异或链表的元素值
{
p=L.left;pre=NULL;
while(p)
{
printf("%d",p->data);
q=XorP(p->LRPtr,pre);
pre=p;p=q; //任何一个结点的LRPtr域值与其左结点指针进行异或运算即得到其右结点指针
}
}//Print_XorLinkedList
2.35
Status Insert_XorLinkedList(XorLinkedList &L,int x,int i)//在异或链表L的第i个元素前插入元素x
{
p=L.left;pre=NULL;
r=(XorNode*)malloc(sizeof(XorNode));
r->data=x;
if(i==1) //当插入点在最左边的情况
{
p->LRPtr=XorP(p.LRPtr,r);
r->LRPtr=p;
L.left=r;
return OK;
}
j=1;q=p->LRPtr; //当插入点在中间的情况
while(++j<i&&q)
{
q=XorP(p->LRPtr,pre);
pre=p;p=q;
}//while //在p,q两结点之间插入
if(!q) return INFEASIBLE; //i不可以超过表长
p->LRPtr=XorP(XorP(p->LRPtr,q),r);
q->LRPtr=XorP(XorP(q->LRPtr,p),r);
r->LRPtr=XorP(p,q); //修改指针
return OK;
}//Insert_XorLinkedList
2.36
Status Delete_XorLinkedList(XorlinkedList &L,int i)//删除异或链表L的第i个元素
{
p=L.left;pre=NULL;
if(i==1) //删除最左结点的情况
{
q=p->LRPtr;
q->LRPtr=XorP(q->LRPtr,p);
L.left=q;free(p);
return OK;
}
j=1;q=p->LRPtr;
while(++j<i&&q)
{
q=XorP(p->LRPtr,pre);
pre=p;p=q;
}//while //找到待删结点q
if(!q) return INFEASIBLE; //i不可以超过表长
if(L.right==q) //q为最右结点的情况
{
p->LRPtr=XorP(p->LRPtr,q);
L.right=p;free(q);
return OK;
}
r=XorP(q->LRPtr,p); //q为中间结点的情况,此时p,r分别为其左右结点
p->LRPtr=XorP(XorP(p->LRPtr,q),r);
r->LRPtr=XorP(XorP(r->LRPtr,q),p); //修改指针
free(q);
return OK;
}//Delete_XorLinkedList
2.37
void OEReform(DuLinkedList &L)//按1,3,5,...4,2的顺序重排双向循环链表L中的所有结点
{
p=L.next;
while(p->next!=L&&p->next->next!=L)
{
p->next=p->next->next;
p=p->next;
} //此时p指向最后一个奇数结点
if(p->next==L) p->next=L->pre->pre;
else p->next=l->pre;
p=p->next; //此时p指向最后一个偶数结点
while(p->pre->pre!=L)
{
p->next=p->pre->pre;
p=p->next;
}
p->next=L; //按题目要求调整了next链的结构,此时pre链仍为原状
for(p=L;p->next!=L;p=p->next) p->next->pre=p;
L->pre=p; //调整pre链的结构,同2.32方法
}//OEReform
分析:next链和pre链的调整只能分开进行.如同时进行调整的话,必须使用堆栈保存偶数结点的指针,否则将会破坏链表结构,造成结点丢失.
2.38
DuLNode * Locate_DuList(DuLinkedList &L,int x)//带freq域的双向循环链表上的查找
{
p=L.next;
while(p.data!=x&&p!=L) p=p->next;
if(p==L) return NULL; //没找到
p->freq++;q=p->pre;
while(q->freq<=p->freq) q=q->pre; //查找插入位置
if(q!=p->pre)
{
p->pre->next=p->next;p->next->pre=p->pre;
q->next->pre=p;p->next=q->next;
q->next=p;p->pre=q; //调整位置
}
return p;
}//Locate_DuList
2.39
float GetValue_SqPoly(SqPoly P,int x0)//求升幂顺序存储的稀疏多项式的值
{
PolyTerm *q;
xp=1;q=P.data;
sum=0;ex=0;
while(q->coef)
{
while(ex<q->exp) xp*=x0;
sum+=q->coef*xp;
q++;
}
return sum;
}//GetValue_SqPoly
2.40
void Subtract_SqPoly(SqPoly P1,SqPoly P2,SqPoly &P3)//求稀疏多项式P1减P2的差式P3
{
PolyTerm *p,*q,*r;
Create_SqPoly(P3); //建立空多项式P3
p=P1.data;q=P2.data;r=P3.data;
while(p->coef&&q->coef)
{
if(p->exp<q->exp)
{
r->coef=p->coef;
r->exp=p->exp;
p++;r++;
}
else if(p->exp<q->exp)
{
r->coef=-q->coef;
r->exp=q->exp;
q++;r++;
}
else
{
if((p->coef-q->coef)!=0) //只有同次项相减不为零时才需要存入P3中
{
r->coef=p->coef-q->coef;
r->exp=p->exp;r++;
}//if
p++;q++;
}//else
}//while
while(p->coef) //处理P1或P2的剩余项
{
r->coef=p->coef;
r->exp=p->exp;
p++;r++;
}
while(q->coef)
{
r->coef=-q->coef;
r->exp=q->exp;
q++;r++;
}
}//Subtract_SqPoly
2.41
void QiuDao_LinkedPoly(LinkedPoly &L)//对有头结点循环链表结构存储的稀疏多项式L求导
{
p=L->next;
if(!p->data.exp)
{
L->next=p->next;p=p->next; //跳过常数项
}
while(p!=L)
{
p->data.coef*=p->data.exp--;//对每一项求导
p=p->next;
}
}//QiuDao_LinkedPoly
2.42
void Divide_LinkedPoly(LinkedPoly &L,&A,&B)//把循环链表存储的稀疏多项式L拆成只含奇次项的A和只含偶次项的B
{
p=L->next;
A=(PolyNode*)malloc(sizeof(PolyNode));
B=(PolyNode*)malloc(sizeof(PolyNode));
pa=A;pb=B;
while(p!=L)
{
if(p->data.exp!=2*(p->data.exp/2))
{
pa->next=p;pa=p;
}
else
{
pb->next=p;pb=p;
}
p=p->next;
}//while
pa->next=A;pb->next=B;
}//Divide_LinkedPoly

❹ 我有两道数据结构的问题 希望能给出详细解答和做题步骤

数据结构与算法的地位对于一个程序员来说不言而喻。今天这篇文章不是来劝你们学习数据结构与算法的,也不是来和你们说数据结构与算法有多重要。
主要是最近几天后台有读者问我是如何学习数据结构与算法的,有没有什么捷径,是要看视频还是看书,去哪刷题等.....而且有些还是大三大四的,搞的我都替你们着急、担心.....
所以我今天就分享下自己平时都是怎么学习的。
学习算法的捷径就是多刷题
说实话,要说捷径,我觉得就是脚踏实地着多动手去刷题,多刷题。
但是,如果你是小白,也就是说,你连常见的数据结构,如链表、树以及常见的算法思想,如递归、枚举、动态规划这些都没学过,那么,我不建议你去刷题的。而是先去找本书先去学习这些,然后再去刷题。
也就是说,假如你要去诸如leetcode这些网站刷题,那么,你要先具备一定的基础,这些基础包括:
1、常见数据结构:链表、树(如二叉树)。
2、常见算法思想:贪婪法、分治法、穷举法、动态规划,回溯法。
以上列出来的算是最基本的吧。就是说你刷题之前,要把这些过一遍再去刷题。如果你连这些最基本的都不知道的话,那么你再刷题的过程中,会很难受的,思路也会相对比较少。
总之,千万不要急,先把这些基本的过一遍,力求理解,再去刷题。这些基础的数据结构与算法,我是在大一第二学期学的,我没看视频,我是通过看书学的,那时候看的书是:
1、算法分析与分析基础:这本比较简单,推荐新手看。
2、数据结构与算法分析---C语言描述:代码用C写的,推荐看。
3、挑战程序设计竞赛(第二版):也是很不错的一本书,推荐看。

阅读全文

与数据结构与算法分析c语言描述答案相关的资料

热点内容
usb蓝牙android 浏览:405
服务器显示error1什么意思 浏览:708
python代码精简 浏览:457
文件加密了怎么找到了 浏览:193
jellyfin插件怎么选择主服务器 浏览:836
asp用户注册源码 浏览:48
什么是照片压缩文件 浏览:392
java调用js代码 浏览:979
昆山市民app怎么修改身份信息 浏览:779
php登陆次数 浏览:744
python字符转成数字 浏览:822
海川用的是什么服务器 浏览:376
口才是练出来的pdf 浏览:458
云服务器哪个公司性价比高 浏览:517
源码论坛打包 浏览:558
php怎么做成word 浏览:692
python批量生成密钥 浏览:492
程序员要不要考社区人员 浏览:150
app的钱怎么充q币 浏览:814
android银行卡识别 浏览:756