导航:首页 > 源码编译 > 算法ADHOC

算法ADHOC

发布时间:2023-09-20 01:24:30

Ⅰ 计算机分治法

一、基本概念

在计算机科学中,分治法是一种很重要的算法。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)……

任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于n个元素的排序问题,当n=1时,不需任何计算。n=2时,只要作一次比较即可排好序。n=3时只要作3次比较即可,…。而当n较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。

二、基本思想及策略

分治法的设计思想是:将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。

分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。

如果原问题可分割成k个子问题,1<k≤n,且这些子问题都可解并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。

三、分治法适用的情况

分治法所能解决的问题一般具有以下几个特征:

1) 该问题的规模缩小到一定的程度就可以容易地解决

2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。

3) 利用该问题分解出的子问题的解可以合并为该问题的解;

4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。

第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;

第二条特征是应用分治法的前提它也是大多数问题可以满足的,此特征反映了递归思想的应用;、

第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。

第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。

四、分治法的基本步骤

分治法在每一层递归上都有三个步骤:

step1 分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;

step2 解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题

step3 合并:将各个子问题的解合并为原问题的解。

它的一般的算法设计模式如下:

Divide-and-Conquer(P)

1. if |P|≤n0

2. then return(ADHOC(P))

3. 将P分解为较小的子问题 P1 ,P2 ,…,Pk

4. for i←1 to k

5. do yi ← Divide-and-Conquer(Pi) △ 递归解决Pi

6. T ← MERGE(y1,y2,…,yk) △ 合并子问题

7. return(T)

其中|P|表示问题P的规模;n0为一阈值,表示当问题P的规模不超过n0时,问题已容易直接解出,不必再继续分解。ADHOC(P)是该分治法中的基本子算法,用于直接解小规模的问题P。因此,当P的规模不超过n0时直接用算法ADHOC(P)求解。算法MERGE(y1,y2,…,yk)是该分治法中的合并子算法,用于将P的子问题P1 ,P2 ,…,Pk的相应的解y1,y2,…,yk合并为P的解。

五、分治法的复杂性分析

一个分治法将规模为n的问题分成k个规模为n/m的子问题去解。设分解阀值n0=1,且adhoc解规模为1的问题耗费1个单位时间。再设将原问题分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。用T(n)表示该分治法解规模为|P|=n的问题所需的计算时间,则有:

T(n)= k T(n/m)+f(n)

通过迭代法求得方程的解:

递归方程及其解只给出n等于m的方幂时T(n)的值,但是如果认为T(n)足够平滑,那么由n等于m的方幂时T(n)的值可以估计T(n)的增长速度。通常假定T(n)是单调上升的,从而当mi≤n<mi+1时,T(mi)≤T(n)<T(mi+1)。

六、可使用分治法求解的一些经典问题

(1)二分搜索
(2)大整数乘法
(3)Strassen矩阵乘法
(4)棋盘覆盖
(5)合并排序
(6)快速排序
(7)线性时间选择
(8)最接近点对问题
(9)循环赛日程表
(10)汉诺塔
七、依据分治法设计程序时的思维过程

实际上就是类似于数学归纳法,找到解决本问题的求解方程公式,然后根据方程公式设计递归程序。
1、一定是先找到最小问题规模时的求解方法
2、然后考虑随着问题规模增大时的求解方法
3、找到求解的递归函数式后(各种规模或因子),设计递归程序即可。

Ⅱ 几种经典算法回顾

今天无意中从箱子里发现了大学时学算法的教材《算法设计与分析》,虽然工作这么几年没在什么地方用过算法,但算法的思想还是影响深刻的,可以在系统设计时提供一些思路。大致翻了翻,重温了一下几种几种经典的算法,做一下小结。分治法动态规划贪心算法回溯法分支限界法分治法1)基本思想将一个问题分解为多个规模较小的子问题,这些子问题互相独立并与原问题解决方法相同。递归解这些子问题,然后将这各子问题的解合并得到原问题的解。2)适用问题的特征该问题的规模缩小到一定的程度就可以容易地解决该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题3)关键如何将问题分解为规模较小并且解决方法相同的问题分解的粒度4)步骤分解->递归求解->合并 divide-and-conquer(P) { if ( | P | <= n0) adhoc(P); //解决小规模的问题 divide P into smaller subinstances P1,P2,...,Pk;//分解问题 for (i=1,i<=k,i++) yi=divide-and-conquer(Pi); //递归的解各子问题 return merge(y1,...,yk); //将各子问题的解合并为原问题的解 }google的核心算法MapRece其实就是分治法的衍生5)分治法例子:合并排序规约过程:动态规划1)基本思想将待求解问题分解成若干个子问题,但是经分解得到的子问题往往不是互相独立的,如果能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,就可以避免大量重复计算2)适用问题的特征最优子结构在递归计算中,许多子问题被重复计算多次3)步骤找出最优解的性质,并刻划其结构特征。递归地定义最优值。以自底向上的方式计算出最优值。根据计算最优值时得到的信息,构造最优解。贪心算法1)基本思想贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择2)适用问题的特征贪心选择性质,即所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。最优子结构性质3)步骤:不断寻找局部最优解4)例子:找硬币,哈夫曼编码,单源最短路径,最小生成树(Prim和Kruskal) 最小生成树图示:回溯法1)基本思想在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树。算法搜索至解空间树的任意一点时,先判断该结点是否包含问题的解。如果肯定不包含,则跳过对该结点为根的子树的搜索,逐层向其祖先结点回溯;否则,进入该子树,继续按深度优先策略搜索2)适用问题的特征:容易构建所解问题的解空间3)步骤定义问题的解空间 确定易于搜索的解空间结构以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索 4)回溯法例子:N皇后问题分支限界法1)基本思想分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。 在分支限界法中,每一个活结点只有一次机会成为扩展结点。活结点一旦成为扩展结点,就一次性产生其所有儿子结点。在这些儿子结点中,导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。这个过程一直持续到找到所需的解或活结点表为空时为止。2)分支限界法例子:单源最短路径问题问题描述:在下图所给的有向图G中,每一边都有一个非负边权。

Ⅲ 分治算法时间复杂度

一:分治算法和递归
1.简述递归

我们要讲到分治算法,我觉得有必要说一下递归,他们就像一对孪生兄弟,经常同时应用在算法设计中,并由此产生许多高效的算法。
直接或间接的调用自身的算法称为递归算法。用函数自身给出定义的函数称为递归函数。

int fibonacci(int n){
if (n <= 1) return 1;
return fibonacci(n-1)+fibonacci(n-2);
}
先简单看一下经典的递归例子,博主会找个时间系统详细的总结一下关于递归的内容。

2.简述分治

分治法的设计思想是:

分–将问题分解为规模更小的子问题;
治–将这些规模更小的子问题逐个击破;
合–将已解决的子问题合并,最终得出“母”问题的解;
一个先自顶向下,再自底向上的过程。

凡治众如治寡,分数是也。—孙子兵法

3.分治法与递归的联系

由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。

二:分治法的适用条件
分治法所能解决的问题一般具有以下几个特征:

1) 该问题的规模缩小到一定的程度就可以容易地解决
2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
3) 利用该问题分解出的子问题的解可以合并为该问题的解;
4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。

第一条特征是绝大多数问题都可以满足的,因为问题的复杂性一般是随着问题规模的增加而增加;

第二条特征是应用分治法的前提它也是大多数问题可以满足的,此特征反映了递归思想的应用;、

第三条是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。

第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好

三:分治法的基本步骤
分解问题:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;(自顶向下)
这里涉及到一个平衡子问题的思想:人们从大量实践中发现,在用分治法设计算法时,最好使子问题的规模大致相同。即将一个问题分成大小相等的k个子问题的处理方法是行之有效的。这种使子问题规模大致相等的做法是出自一种平衡子问题的思想,它几乎总是比子问题规模不等的做法要好。

解决问题:如果问题规模较小而容易被解决则直接解,否则递归地解各个子问题,以得到小问题的解。
合并结果:将各个子问题的解合并为原问题的解:(自底向上)。
它的一般算法设计模式如下:
divide-and-conquer(P){
if ( | P | <= n0) adhoc(P); //(2)解决问题:递归到小问题,则解决小规模的问题(自顶向下)
divide P into smaller subinstances P1,P2,...,Pk;//(1)分解问题
for (i=1,i<=k,i++)
yi=divide-and-conquer(Pi); //利用递归的解各子问题
return merge(y1,...,yk); //将各子问题的解合并为原问题的解(自底向上)
}
四:分治法的复杂性分析
从分治法的一般设计模式可以看出,用他设计出的程序一般是递归算法。因此分治法的计算效率通常可以用递归方程来进行分析。
一个分治法将规模为n的问题分成k个规模为n/m的子问题去解。设分解阀值(表示当问题P规模不超过n0时,问题已容易解出,不必再继续分解)n0=1,且adhoc解规模为1的问题耗费1个单位时间。再设将原问题分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。用T(n)表示该分治法解规模为|P|=n的问题所需的计算时间,则有:

通常可以用展开递归式的方法来解这类递归方程,反复带入求解得

阅读全文

与算法ADHOC相关的资料

热点内容
工商app积分怎么查询 浏览:143
铁路app怎么买火车票 浏览:309
移魅族除的app怎么添加 浏览:240
兔笼子大号加密 浏览:171
单片机程序烧录操作成功 浏览:878
指标高抛低吸点位源码 浏览:205
25匹压缩机铜管 浏览:570
单片机单灯左移05 浏览:150
买服务器练手什么配置 浏览:783
服务器被毁该怎么办 浏览:939
python私有库 浏览:514
Python有中文吗 浏览:736
麦块的服务器为什么都进不去 浏览:474
新买的服务器如何打开 浏览:35
安卓软件游戏怎么开发 浏览:319
用扑克摆爱心解压神器怎么摆 浏览:70
松下制冷压缩机 浏览:275
pdf里怎么修改文字 浏览:686
已保存文档加密如何设置 浏览:413
怎样判断加密货币是牛是熊 浏览:948