❶ 粒子群算法matlab程序无法运行
%% 清空环境
clear
clc
tic
%% 参数初始化
% 粒子群算法中的两个参数
c1 = 1.49445;
c2 = 1.49445;
maxgen = 200; % 进化次数
sizepop = 20; % 种群规模
Vmax = 1;
Vmin = -1;
popmax = 5;
popmin = -5;
%% 产生初始粒子和速度
for i = 1:sizepop
% 随机产生一个种群
pop(i,:) = 5 * rands(1,2); % 初始种群
V(i,:) = rands(1,2); % 初始化速度
% 计算适应度
fitness(i) = fun(pop(i,:)); % 染色体的适应度
end
% 找最好的染色体
[bestfitness bestindex] = min(fitness);
zbest = pop(bestindex,:); % 全局最佳
gbest = pop; % 个体最佳
fitnessgbest = fitness; % 个体最佳适应度值
fitnesszbest = bestfitness; % 全局最佳适应度值
%% 迭代寻优
for i = 1:maxgen
for j = 1:sizepop
% 速度更新
V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));
V(j,find(V(j,:)>Vmax)) = Vmax;
V(j,find(V(j,:)<Vmin)) = Vmin;
%种群更新
pop(j,:) = pop(j,:) + 0.5*V(j,:);
pop(j,find(pop(j,:)>popmax)) = popmax;
pop(j,find(pop(j,:)<popmin)) = popmin;
% 自适应变异
if rand > 0.8
k = ceil(2*rand);
pop(j,k) = rand;
end
% 适应度值
fitness(j) = fun(pop(j,:));
end
% 个体最优更新
if fitness(j) < fitnessgbest(j)
gbest(j,:) = pop(j,:);
fitnessgbest(j) = fitness(j);
end
% 群体最优更新
if fitness(j) < fitnesszbest
zbest = pop(j,:);
fitnesszbest = fitness(j);
end
yy(i) = fitnesszbest;
end
toc
%% 结果分析
plot(yy);
title(['适应度曲线 ' '终止代数=' num2str(maxgen)]);
xlabel('进化代数');
ylabel('适应度');
fun函数如下
function y = fun(x)
y = -20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2)) - exp((cos(2*pi*x(1))+ cos(2*pi*x(2)))/2) + 20 + 2.71289;
❷ 粒子群算法原理
粒子群算悉银法原理如下:
粒子群优化(Particle Swarm Optimization,PSO)算法是1995年由美国学者Kennedy等人提出的,该算法是模拟鸟类觅食等群体智能行为的智能优化算法。在自然界中,鸟群在觅食的时候,一般存在个体和群体协同的行为。
每个粒子都旦薯会向两个值学习,一个值是个体的历史最优值 ;另一个值是群体的历史最优值(全局最优值) 。粒子会根据这两个值来调整自身的速度和位置,而每个位置的优劣都是根据适应度值来确定的。适应度函数是优化的目标函数。
❸ 我利用粒子群算法工具箱求解最优值时陷入了局部最优该如何解决
粒子群陷入局部最优在所难免,建议可以采取加大权重因子的方法,或者一些改进的粒子群算法会提出对收敛的种群进行干扰,从而产生新的种群,另外可以采用量子粒子群算法,在局部最优问题上解决的还算可以
❹ 粒子群算法(一):粒子群算法概述
本系列文章主要针对粒子群算法进行介绍和运用,并给出粒子群算法的经典案例,从而进一步加深对粒子群算法的了解与运用(预计在一周内完成本系列文章)。主要包括四个部分:
粒子群算法也称粒子群优化算法(Particle Swarm Optimization, PSO),属于群体智能优化算法,是近年来发展起来的一种新的进化算法(Evolutionary Algorithm, EA)。 群体智能优化算法主要模拟了昆虫、兽群、鸟群和鱼群的群集行为,这些群体按照一种合作的方式寻找食物,群体中的每个成员通过学习它自身的经验和其他成员的经验来不断地改变搜索的方向。 群体智能优化算法的突出特点就是利用了种群的群体智慧进行协同搜索,从而在解空间内找到最优解。
PSO 算法和模拟退火算法相比,也是 从随机解出发,通过迭代寻找最优解 。它是通过适应度来评价解的品质,但比遗传算法规则更为简单,没有遗传算法的“交叉”和“变异”,它通过追随当前搜索到的最大适应度来寻找全局最优。这种算法以其 容易实现、精度高、收敛快 等优点引起了学术界的重视,并在解决实际问题中展示了其优越性。
在粒子群算法中,每个优化问题的解被看作搜索空间的一只鸟,即“粒子”。算法开始时首先生成初始解,即在可行解空间中随机初始化 粒子组成的种群 ,其中每个粒子所处的位置 ,都表示问题的一个解,并依据目标函数计算搜索新解。在每次迭代时,粒子将跟踪两个“极值”来更新自己, 一个是粒子本身搜索到的最好解 ,另一个是整个种群目前搜索到的最优解 。 此外每个粒子都有一个速度 ,当两个最优解都找到后,每个粒子根据如下迭代式更新:
其中参数 称为是 PSO 的 惯性权重(inertia weight) ,它的取值介于[0,1]区间;参数 和 称为是 学习因子(learn factor) ;而 和 为介于[0,1]之间的随机概率值。
实践证明没有绝对最优的参数,针对不同的问题选取合适的参数才能获得更好的收敛速度和鲁棒性,一般情况下 , 取 1.4961 ,而 采用 自适应的取值方法 ,即一开始令 , 使得 PSO 全局优化能力较强 ;随着迭代的深入,递减至 , 从而使得PSO具有较强的局部优化能力 。
参数 之所以被称之为惯性权重,是因为 实际 反映了粒子过去的运动状态对当前行为的影响,就像是我们物理中提到的惯性。 如果 ,从前的运动状态很少能影响当前的行为,粒子的速度会很快的改变;相反, 较大,虽然会有很大的搜索空间,但是粒子很难改变其运动方向,很难向较优位置收敛,由于算法速度的因素,在实际运用中很少这样设置。也就是说, 较高的 设置促进全局搜索,较低的 设置促进快速的局部搜索。