❶ 求助Matlab蚁群算法求一般函数极值的算法
function [ROUTES,PL,Tau]=ACASP(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q)
%% ---------------------------------------------------------------
% ACASP.m
% 蚁群算法动态寻路算法
% ChengAihua,PLA Information Engineering University,ZhengZhou,China
% Email:[email protected]
% All rights reserved
%% ---------------------------------------------------------------
% 输入参数列表
% G 地形图为01矩阵,如果为1表示障碍物
% Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素)
% K 迭代次数(指蚂蚁出动多少波)
% M 蚂蚁个数(每一波蚂蚁有多少个)
% S 起始点(最短路径的起始点)
% E 终止点(最短路径的目的点)
% Alpha 表征信息素重要程度的参数
% Beta 表征启发式因子重要程度的参数
% Rho 信息素蒸发系数
% Q 信息素增加强度系数
%
% 输出参数列表
% ROUTES 每一代的每一只蚂蚁的爬行路线
% PL 每一代的每一只蚂蚁的爬行路线长度
% Tau 输出动态修正过的信息素
%% --------------------变量初始化----------------------------------
%load
D=G2D(G);
N=size(D,1);%N表示问题的规模(象素个数)
MM=size(G,1);
a=1;%小方格象素的边长
Ex=a*(mod(E,MM)-0.5);%终止点横坐标
if Ex==-0.5
Ex=MM-0.5;
end
Ey=a*(MM+0.5-ceil(E/MM));%终止点纵坐标
Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数
%下面构造启发式信息矩阵
for i=1:N
if ix==-0.5
ix=MM-0.5;
end
iy=a*(MM+0.5-ceil(i/MM));
if i~=E
Eta(1,i)=1/((ix-Ex)^2+(iy-Ey)^2)^0.5;
else
Eta(1,i)=100;
end
end
ROUTES=cell(K,M);%用细胞结构存储每一代的每一只蚂蚁的爬行路线
PL=zeros(K,M);%用矩阵存储每一代的每一只蚂蚁的爬行路线长度
%% -----------启动K轮蚂蚁觅食活动,每轮派出M只蚂蚁--------------------
for k=1:K
disp(k);
for m=1:M
%% 第一步:状态初始化
W=S;%当前节点初始化为起始点
Path=S;%爬行路线初始化
PLkm=0;%爬行路线长度初始化
TABUkm=ones(1,N);%禁忌表初始化
TABUkm(S)=0;%已经在初始点了,因此要排除
DD=D;%邻接矩阵初始化
%% 第二步:下一步可以前往的节点
DW=DD(W,:);
DW1=find(DW
for j=1:length(DW1)
if TABUkm(DW1(j))==0
DW(j)=inf;
end
end
LJD=find(DW
Len_LJD=length(LJD);%可选节点的个数
%% 觅食停止条件:蚂蚁未遇到食物或者陷入死胡同
while W~=E&&Len_LJD>=1
%% 第三步:转轮赌法选择下一步怎么走
PP=zeros(1,Len_LJD);
for i=1:Len_LJD
PP(i)=(Tau(W,LJD(i))^Alpha)*(Eta(LJD(i))^Beta);
end
PP=PP/(sum(PP));%建立概率分布
Pcum=cumsum(PP);
Select=find(Pcum>=rand);
%% 第四步:状态更新和记录
Path=[Path,to_visit];%路径增加
PLkm=PLkm+DD(W,to_visit);%路径长度增加
W=to_visit;%蚂蚁移到下一个节点
for kk=1:N
if TABUkm(kk)==0
DD(W,kk)=inf;
DD(kk,W)=inf;
end
end
TABUkm(W)=0;%已访问过的节点从禁忌表中删除
for j=1:length(DW1)
if TABUkm(DW1(j))==0
DW(j)=inf;
end
end
LJD=find(DW
Len_LJD=length(LJD);%可选节点的个数
end
%% 第五步:记下每一代每一只蚂蚁的觅食路线和路线长度
ROUTES{k,m}=Path;
if Path(end)==E
PL(k,m)=PLkm;
else
PL(k,m)=inf;
end
end
%% 第六步:更新信息素
Delta_Tau=zeros(N,N);%更新量初始化
for m=1:M
if PL(k,m) ROUT=ROUTES{k,m};
TS=length(ROUT)-1;%跳数
PL_km=PL(k,m);
for s=1:TS
x=ROUT(s);
Delta_Tau(y,x)=Delta_Tau(y,x)+Q/PL_km;
end
end
end
Tau=(1-Rho).
❷ 蚁群算法求函数的最小值
未定义链告函数或变量 'max_global'神含。
出错 ant_main_program (line 107)
if max_local(i_ger) > max_global(i_ger-1)
怎游唤笑么解决
❸ 用蚁群算法求函数f(x,y)=+-((x2++y-+1)+(x+y3-+-7)2)+/200+10
蚁群算法是一种基于模拟蚂蚁在寻找食物过程中的行为模式来求解优化问题的算法。对于这个函数f(x,y)=±((x2+y±1)+(x+y3±7)2)/200+10,我们可以利用蚁群算法来求其最小值,具体步骤如下:
初始化一组蚂蚁,并随机生成一个二元组 (x,y)作键神银为起始点。
设置蚁群算法的一些参数,如迭代次数,最大和最小信息素浓度,信息素挥发因子等。
对于每只蚂蚁,计算其在当前位置 (x,y)下能够走到的所有可能的邻居点,并根据一定的策略(如轮盘赌选择法)选择下一个稿宴要到达的点。
更新每只蚂蚁所经过的路径信息素浓度,使其与走过的路径长度成反比关系。
更新全局最优解,记录当前所有蚂蚁中走过路径 f(x,y) 最小的那一个。
更新信息素浓度,增加路径瞎哗 f(x,y) 对信息素浓度的影响,同时根据一定的规则挥发部分信息素。
判断是否满足停止条件(如迭代次数或全局最优解的精度已经达到预设值),如果未满足,则回到第3步,否则输出全局最优解。
需要注意的是,由于本函数存在两个算符可以取正或者取负,不同的取值会导致函数的最小值位置出现变化。因此需要对全局最优解进行记录,对于每个算符取值进行多次蚂蚁搜索,最终得到两种情况下的最小值,并进行比较。
❹ 蚁群算法求函数最大值
这里使用蚁群算法求函数的最大值,函数是:
步骤如下:
下面是主函数:
程序运行结果绘图如下,其中蓝色点为第一代蚁群,红色为最后一代蚁群:
函数说明如下:
下面计算函数的状态转移概率,进行局部搜索和全局搜索:
之后约束边界:
最后进行选择:
初始化蚁群函数:
计算目标函数值函数:
绘制函数图像函数: