导航:首页 > 源码编译 > 清华大学生速算法教程

清华大学生速算法教程

发布时间:2022-03-03 14:17:08

⑴ 6-2=用手脑速算法视频教程全集

你加我,我有。

⑵ 学生速算方法

1. 方法一:带符号搬家法

当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。

例如:

23-11+7=23+7-11

4×14×5=4×5×14

10÷8×4=10×4÷8

2. 方法二:结合律法

加括号法

(1)在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。

例如:

23+19-9=23+(19-9)

33-6-4=33-(6+4)

(2)在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。

例如:

2×6÷3=2×(6÷3)

10÷2÷5=10÷(2×5)

去括号法

(1)在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加)。

例如:

17+(13-7)=17+13-7

23-(13-9)=23-13+9

23-(13+5)=23-13-5

(2)在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。)

例如:

1×(6÷2)=1×6÷2

24÷(3×2)=24÷3÷2

24÷(6÷3)=24÷6×3

3. 方法三:乘法分配律法

分配法

括号里是加或减运算,与另一个数相乘,注意分配。

例如:

8×(5+11)=8×5+8×11

提取公因式法

注意相同因数的提取。

例如:

9×8+9×2=9×(8+2)

4. 方法四:凑整法

看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦,有借有还,再借不难嘛。

例如:

99+9=(100-1)+(10-1)

5. 方法五:拆分法

拆分法就是为了方便计算,把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小哦。

例如:

32×125×25

=4×8×125×25

=(4×25)×(8×125)

=100×1000

要想让孩子熟练运用速算方法,需要通过持之以恒的练习,提升计算能力,这样,无论平时做作业还是考试都能游刃有余。

⑶ 速算的方法与技巧

全脑速算
全脑速算是模拟电脑运算程序而研发的快速脑算技术教程,它能使儿童快速学会脑算任意数加、减、乘、除、乘方及验算。从而快速提高孩子的运算速度和准确率。
全脑速算的运算原理:
通过双手的活动来刺激大脑,让大脑对数字直接产生敏感的条件反射作用,达到快速计算的目的。
(1)以手作为运算器并产生直观的运算过程。
(2)以大脑作为存储器将运算的过程快速产生反应并表示出。
例如:6752 + 1629 = ?
运算过程和方法: 首位6+1是7,看后位(7+6)满10,进位进1,首位7+1写8,百位7减去6的补数4写3,(后位因5+2不满10,本位不进位),十位5+2是7,看后位(2+9)满10进1,本位7+1写8,个位2减去9的补数1写1,所以本题结果为8381。
全脑速算乘法运算部分原理:
假设A、B、C、D为待定数字,则任意两个因数的积都可以表示成:
AB×CD=(AB+A×D/C)×C0+B×D
= AB×C0 +A×D×C0/C+B×D
= AB×C0 +A×D×10+B×D
= AB×C0 +A0×D+B×D
= AB×C0 +(A0+B)×D
= AB×C0 +AB×D
= AB×(C0 +D)
= AB×CD
此方法比较适用于C能整除A×D的乘法,特别适用于两个因数的“首数”是整数倍,或者两个因数中有一个因数的“尾数”是“首数”的整数倍。
两个因数的积,只要两个因数的首数是整数倍关系,都可以运用此方法法进行运算,
即A =nC时,
AB×CD=(AB+n D)×C0+B×D
例如:
23×13=29×10+3×3=299
33×12=39×10+3×2=396
加法速算
计算任意位数的加法速算,方法很简单学习者只要熟记一种加法速算通用口诀 ——“本位相加(针对进位数) 减加补,前位相加多加一 ”就可以彻底解决任意位数从高位数到低位数的加法速算问题。
例如:(1),67+48=(6+5)×10+(7-2)=115,(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。
减法速算
计算任意位数的减法速算方法也同样是用一种减法速算通用口诀 ——“本位相减(针对借位数) 加减补,前位相减多减一 ”就可以彻底解决任意位数从高位数到低位数的减法速算问题。
例如:(1),67-48=(6-5)×10+(7+2)=19,(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。
乘法速算
乘法速算通用公式:ab×cd=(a+1)×c×100+b×d+魏氏速算嬗数×10。
速算嬗数|=(a-c)×d+(b+d-10)×c,,
速算嬗数‖=(a+b-10)×c+(d-c)×a,
速算嬗数Ⅲ=a×d-‘b’(补数)×c 。 更是独秀一枝,无以伦比。
(1),用第一种速算嬗数=(a-c)×d+(b+d-10)×c,适用于首同尾任意的任意二位数乘法速算。
比如 :26×28, 47×48,87×84-----等等,其嬗数一目了然分别等于“8”,“20 ”和“8”即可。
(2), 用第二种速算嬗数=(a+b-10)×c+(d-c)×a适用于一因数的二位数之和接近等于“10”,另一因数的二位数之差接近等于“0”的任意二位数乘法速算 ,
比如 :28×67, 47×98, 73×88----等等 ,其嬗数也同样可以一目了然分别等于“2”,“5 ”和“0”即可。
(3), 用第三种速算嬗数=a×d-‘b’(补数)×c 适用于任意二位数的乘法速算。

⑷ 速算方法

(1)以手作为运算器并产生直观的运算过程。

(2)以大脑作为存储器将运算的过程快速产生反应并表示出。

例如:6752 + 1629 = ?

运算过程和方法: 首位6+1是7,看后位(7+6)满10,进位进1,首位7+1写8,百位7减去6的补数4写3,(后位因5+2不满10,本位不进位),十位5+2是7,看后位(2+9)满10进1,本位7+1写8,个位2减去9的补数1写1,所以本题结果为8381。

金华全脑速算乘法运算部分原理

令A、B、C、D为待定数字,则任意两个因数的积都可以表示成:

AB×CD=(AB+A×D/C)×C0+B×D

= AB×C0+A×D×C0/C+B×D

= AB×C0+A×D×10+B×D

= AB×CD+A0×D+B×D

= AB×C0+(A0+B)×D

= AB×C0+AB×D

= AB×(C0+D)

= AB×CD

此方法比较适用于C能整除A×D的乘法,特别适用于两个因数的“首数”是整数倍,或者两个因数中有一个因数的“尾数”是“首数”的整数倍。

(4)清华大学生速算法教程扩展阅读

速算它可以不借助任何计算工具在很短时间内就能使学习者,用一种思维,一种方法快速准确地掌握任意数加、减、乘、除的速算方法。从而达到快速提高学习者口算和心算的速算能力。

1,加法速算:计算任意位数的加法速算,方法很简单学习者只要熟记一种加法速算通用口诀 ——“本位相加(针对进位数) 减加补,前位相加多加一 ”就可以彻底解决任意位数从高位数到低位数的加法速算方法,比如:

(1),67+48=(6+5)×10+(7-2)=115,

(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。

2,减法速算:计算任意位数的减法速算方法也同样是用一种减法速算通用口诀 ——“本位相减(针对借位数) 加减补,前位相减多减一 ”就可以彻底解决任意位数从高位数到低位数的减法速算方法,比如:

(1),67-48=(6-5)×10+(7+2)=19

(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。

3,乘法速算:魏氏乘法速算通用公式:ab×cd=(a+1)×c×100+b×d+魏氏速算嬗数×10。

速算嬗数|=(a-c)×d+(b+d-10)×c,,

速算嬗数‖=(a+b-10)×c+(d-c)×a,

速算嬗数Ⅲ=a×d-‘b’(补数)×c 。

⑸ 速算法的方法

乘法速算
一.两个20以内数的乘法
两个20以内数相乘,将一数的个位数与另一个数相加乘以10,然后再加两个尾数的积,就是应求的得数。如12×13=156,计算程序是将12的尾数2,加至13里,13加2等于15,15×10=150,然后加各个尾数的积得156,就是应求的积数。

二.首同尾互补的乘法
两个十位数相乘,首尾数相同,而尾十互补,其计算方法是:头加1,然后头乘为前积,尾乘尾为后积,两积连接起来,就是应求的得数。如26×24=624。计算程序是:被乘数26的头加1等于3,然后头乘头,就是3×2=6,尾乘尾6×4=24,相连为624。
三.乘数加倍,加半或减半的乘法
在首同尾互补的计算上,可以引深一步就是乘数可加倍,加半倍,也可减半计算,但是:加倍、加半或减半都不能有进位数或出现小数,如48×42是规定的算法,然而,可以将乘数42加倍位84,也可以减半位21,也可加半倍位63,都可以按规定方法计算。48×21=1008,48×63=3024,48×84=4032。有进位数的不能算。如87×83=7221,将83加倍166,或减半41.5,这都不能按规定的方法计算。
四.首尾互补与首尾相同的乘法
一个数首尾互补,而另一个数首尾相同,其计算方法是:头加1,然后头乘头为前积,尾乘尾为后积,两积相连为乘积。如37×33=1221,计算程序是(3+1)×3×100+7×3=1221。
五.两个头互补尾相同的乘法
两个十位数互补,两个尾数相同,其计算方法是:头乘头后加尾数为前积,尾自乘为后积。如48×68=3264。计算程序是4×6=24 24+8=32 32为前积,8×8=64为后积,两积相连就得3264。
六.首同尾非互补的乘法
两个十位数相乘,首位数相同,而两个尾数非互补,计算方法:头加1,头乘头,尾乘尾,把两个积连接起来。再看尾和尾的和比10大几还是小几,大几就加几个首位数,小几就减掉几个首位数。加减的位置是:一位在十位加减,两位在百位加减。如36×35=1260,计算时(3+1)×3=12 6×5=30 相连为1230 6+5=11,比10大1,就加一个首位3,一位在十位加,1230+30=1260 36×35就得1260。再如36×32=1152,程序是(3+1)×3=12,6×2=12,12与12相连为1212,6+2=8,比10小2减两个3,3×2=6,一位在十位减,1212-60就得1152。
七.一数相同一数非互补的乘法
两位数相乘,一数的和非互补,另一数相同,方法是:头加1,头乘头,尾乘尾,将两积连接起来后,再看被乘数横加之和比10大几就加几个乘数首。比10小几就减几个乘数首,加减位置:一位数十位加减,两位数百位加减,如65×77=5005,计算程序是(6+1)×7=49,5×7=35,相连为4935,6+5=11,比10大1,加一个7,一位数十位加。4935+70=5005
八.两头非互补两尾相同的乘法
两个头非互补,两个尾相同,其计算方法是:头乘头加尾数,尾自乘。两积连接起来后,再看两个头的和比10大几或小几,比10大几就加几个尾数,小几就减几个尾数,加减位置:一位数十位加减,两位数百位加减。如67×87=5829,计算程序是:6×8+7=55,7×7=49,相连为5549,6+8=14,比10大4,就加四个7,4×7=28,两位数百位加,5549+280=5829
九.任意两位数头加1乘法
任意两个十位数相乘,都可按头加1方法计算:头加1后,头乘头,尾乘尾,将两个积连接起来后,有两比,这两比是非常关键的,必须牢记。第一是比首,就是被乘数首比乘数首小几或大几,大几就加几个乘数尾,小几就减几个乘数尾。第二是比两个尾数的和比10大几或小几,大几就加几个乘数首,小几就减几个乘数首。加减位置是:一位数十位加减,两位数百位加减。如:35×28=980,计算程序是:(3+1)×2=8,5×8=40,相连为840,这不是应求的 积数,还有两比,一是比首,3比2大1,就要加一个乘数尾,加8,二是比尾,5+8=13,13比10大3,就加3个乘数首,3×2=6,8+6=14,两位数百位加,840+140=980。再如:28×35=980, 计算程序是:(2+1)×3=9,8×5=40,相连位940,一是比首,2比3小1,减一个乘数尾,减5,二是比尾,8+5=13,比10大3,加三个3,3×3=9,9-5=4,一位数十位加,940+40=980。

⑹ 清华大学计算机全套教程

看看姐姐看见健健康康可能就会结婚后黄金价格变化湖北南部近海保监会还将哈哈哈哈哈哈哈哈哈哈哈姐姐和环境很好

⑺ 一分钟速算免费教程-一分钟速算免费教程

你去买一套啊,里面有配套的光盘和相应的配套教材和训练手册,这样学起来快多了,对于数学的基本运算,很快就能全部掌握的哦。你可以去我买的地方买啊:http://www.yifenzhongsusuan.cn/

⑻ 考上清华北大的学生都是速算高手吗,或者计算速度相当快

不是,高分不只靠数学

⑼ 史丰收速算法全套教程是什么

史丰收速算法有一套别具一格的计算法则,计算口诀,也就是计算规律。在加法方面,发明了一位数加法的指算加法:直加、反手加。减内凑反手加、加外凑反手加,进1减补加;

提出了多位数加法的新法则:数位对齐,高位加起,写十记个,升个为十,串加下位,逐位右移,在乘法方面,总结出乘数是一位数乘法的8条进位规律共36句口诀和8条个位规律共13句口诀,以及一条求乘积的每位数的公式:本位积=(本个十后进)取和的个位数。

有了这三个规律,再加上指算的配合,就可以丢掉乘法九九表进行乘法的快速计算。在减法里,提出了"复合数"概念,用"复合数"作铺垫,把减法转化为用加法来计算,又提出用乘法的"一口清"来定商,加快了求商速度。

同时,两位数乃至多位数的乘除法都有心算方法。这样,就大大提高了加、减、乘、除运算的计算速度。

(9)清华大学生速算法教程扩展阅读:

史丰收速算法有自己的计算体系,系统性强,在加法里,先是一位数的直加、反手加、减内凑反手加,加外凑反手加,进1减补加和多个一位数连加,然后是两位数和多位数加法,在乘法里,先是乘数是2、3、4、5、6、7、8、9的一位数乘法,再是乘数是两位数的笔算乘法和心算乘法,然后是乘数是三位数的笔算乘法和心算乘法。

在减法里,只有基本概念没有计算方法,通过以"复合数"为计算桥梁,把减法转化为用加法来计算。在除法里,先是除数是一位数的除法,再是除数是两位数的笔算除法和心算除法,然后是除数是三位数的笔算除法和心算除法,为了保证整数四则运算的顺利进行,还建立了一套基本概念;

例如1至9的指型、内凑、外凑、补数、复合数、偶同数、自倍数、循环数、假小数、本位、本个、后进、本位积等。由此看出,史丰收速算法的内涵体系是由浅入深,由易到难的,符合学生的认知规律。

阅读全文

与清华大学生速算法教程相关的资料

热点内容
命令方块指令冰封剑 浏览:784
android中so文件 浏览:276
手工用气球做的捏捏乐解压神器 浏览:196
app升级后就闪退怎么办 浏览:35
手表上的乐涂app怎么下载 浏览:721
程序员身上的六宗罪是什么 浏览:145
游戏编程精粹6 浏览:69
修复ie的命令 浏览:602
linux服务器怎么查看地址 浏览:65
底部异地持仓源码 浏览:105
加密应用手机 浏览:798
程序员考试考什么科目 浏览:485
程序员必备文档编辑 浏览:960
踩水果解压大全 浏览:634
什么是dk服务器在 浏览:461
nusoapphp下载 浏览:929
黑莓原生解压rar 浏览:956
百度解压缩在哪 浏览:788
硬解压卡怎么用 浏览:183
新买的联想服务器怎么配置 浏览:757