A. 快速排序的一次划分过程
快速排序(Quicksort)是对冒泡排序的一种改进,由东尼·霍尔在1960年提出。 快速排序是指通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序。整个排序过程可以递归进行,以此达到整个数据变成有序序列。
快速排序使用分治法(Divide and conquer)策略来把一个序列(list)分为两个子序列(sub-lists)。
步骤为:
从数列中挑出一个元素,称为“基准”(pivot),
重新排序数列,所有比基准值小的元素摆放在基准前面,所有比基准值大的元素摆在基准后面(相同的数可以到任何一边)。在这个分区结束之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
递归地(recursively)把小于基准值元素的子数列和大于基准值元素的子数列排序。
递归到最底部时,数列的大小是零或一,也就是已经排序好了。这个算法一定会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。
上面简单版本的缺点是,它需要的额外存储空间,也就跟归并排序一样不好。额外需要的存储器空间配置,在实际上的实现,也会极度影响速度和缓存的性能。有一个比较复杂使用原地(in-place)分区算法的版本,且在好的基准选择上,平均可以达到空间的使用复杂度。
B. 快速排序算法(free pascal)详解,不要源程序,时间复杂度n(logn);谢了//
快速排序是对冒泡排序的一种改进。它的基本思想是:通过一躺排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一不部分的所有数据都要小,然后再按次方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
假设要排序的数组是A[1]……A[N],首先任意选取一个数据(通常选用第一个数据)作为关键数据,然后将所有比它的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一躺快速排序。一躺快速排序的算法是:
1)、设置两个变量I、J,排序开始的时候I:=1,J:=N;
2)以第一个数组元素作为关键数据,赋值给X,即X:=A[1];
3)、从J开始向前搜索,即由后开始向前搜索(J:=J-1),找到第一个小于X的值,两者交换;
4)、从I开始向后搜索,即由前开始向后搜索(I:=I+1),找到第一个大于X的值,两者交换;
5)、重复第3、4步,直到I>j;
详细过程举例如下:
原序: [26 5 37 1 61 11 59 15 48 19]
一: [19 5 15 1 11] 26 [59 61 48 37]
二: [11 5 15 1] 19 26 [59 61 48 37]
三: [1 5] 11 [15] 19 26 [59 61 48 37]
四: 1 5 11 [15] 19 26 [59 61 48 37]
五: 1 5 11 15 19 26 [59 61 48 37]
六: 1 5 11 15 19 26 [37 48] 59 [61]
七: 1 5 11 15 19 26 37 48 59 [61]
八: 1 5 11 15 19 26 37 48 59 61
快速排序法是所有排序方法中速度最快、效率最高的方法。程序如下:
var a:array[0..10] of integer;
n:integer;
procere qsort(l,r:longint);{r,l表示集合的左右边界,即把第r到第l个数进行排序}
var i,j,m:longint;
begin
m:=a[l];{标准数}
i:=l; {I,J为指针}
j:=r;
repeat
while a[i]<m do inc(i);
while a[j]>m do dec(j);
if i<=j then begin
a[0]:=a[i];
a[i]:=a[j];
a[j]:=a[0];
inc(i);
dec(j);
end;
until i>j;
if l<j then qsort(l,j); {如果集合中不止一个数则进入下一层递归,l,J为新边界}
if i<rthen qsort(i,r); {如果集合中不止一个数则进入下一层递归,i,r为新边界}
end;
begin
for n:=1 to 10 do read(a[n]);
qsort(1,10);
for n:=1 to 10 do write(a[n]:4);
end.
C. 快速排序法的平均时间复杂度和最坏时间复杂度分别是多少
快速排序的平均时间复杂度和最坏时间复杂度分别是O(nlgn)、O(n^2)。
当排序已经成为基本有序状态时,快速排序退化为O(n^2),一般情况下,排序为指数复杂度。
快速排序最差情况递归调用栈高度O(n),平均情况递归调用栈高度O(logn),而不管哪种情况栈的每一层处理时间都是O(n),所以,平均情况(最佳情况也是平均情况)的时间复杂度O(nlogn),最差情况的时间复杂度为O(n^2)。
(3)分治算法实现快速排序c扩展阅读
快速排序是C.R.A.Hoare于1962年提出的一种划分交换排序,它采用了一种分治的策略,通常称其为分治法。快速排序算法通过多次比较和交换来实现排序,其排序流程如下:
(1)首先设定一个分界值,通过该分界值将数组分成左右两部分。
(2)将大于或等于分界值的数据集中到数组右边,小于分界值的数据集中到数组的左边。此时,左边部分中各元素都小于或等于分界值,而右边部分中各元素都大于或等于分界值。
(3)然后,左边和右边的数据可以独立排序。对于左侧的数组数据,又可以取一个分界值,将该部分数据分成左右两部分,同样在左边放置较小值,右边放置较大值。右侧的数组数据也可以做类似处理。
(4)重复上述过程,可以看出,这是一个递归定义。通过递归将左侧部分排好序后,再递归排好右侧部分的顺序。当左、右两个部分各数据排序完成后,整个数组的排序也就完成了。
D. 快速排序算法原理与实现
快速排序的基本思想就是从一个数组中任意挑选一个元素(通常来说会选择最左边的元素)作为中轴元素,将剩下的元素以中轴元素作为比较的标准,将小于等于中轴元素的放到中轴元素的左边,将大于中轴元素的放到中轴元素的右边。
然后以当前中轴元素的位置为界,将左半部分子数组和右半部分子数组看成两个新的数组,重复上述操作,直到子数组的元素个数小于等于1(因为一个元素的数组必定是有序的)。
以下的代码中会常常使用交换数组中两个元素值的Swap方法,其代码如下
publicstaticvoidSwap(int[] A, inti, intj){
inttmp;
tmp = A[i];
A[i] = A[j];
A[j] = tmp;
(4)分治算法实现快速排序c扩展阅读:
快速排序算法 的基本思想是:将所要进行排序的数分为左右两个部分,其中一部分的所有数据都比另外一 部分的数据小,然后将所分得的两部分数据进行同样的划分,重复执行以上的划分操作,直 到所有要进行排序的数据变为有序为止。
定义两个变量low和high,将low、high分别设置为要进行排序的序列的起始元素和最后一个元素的下标。第一次,low和high的取值分别为0和n-1,接下来的每次取值由划分得到的序列起始元素和最后一个元素的下标来决定。
定义一个变量key,接下来以key的取值为基准将数组A划分为左右两个部分,通 常,key值为要进行排序序列的第一个元素值。第一次的取值为A[0],以后毎次取值由要划 分序列的起始元素决定。
从high所指向的数组元素开始向左扫描,扫描的同时将下标为high的数组元素依次与划分基准值key进行比较操作,直到high不大于low或找到第一个小于基准值key的数组元素,然后将该值赋值给low所指向的数组元素,同时将low右移一个位置。
如果low依然小于high,那么由low所指向的数组元素开始向右扫描,扫描的同时将下标为low的数组元素值依次与划分的基准值key进行比较操作,直到low不小于high或找到第一个大于基准值key的数组元素,然后将该值赋给high所指向的数组元素,同时将high左移一个位置。
重复步骤(3) (4),直到low的植不小于high为止,这时成功划分后得到的左右两部分分别为A[low……pos-1]和A[pos+1……high],其中,pos下标所对应的数组元素的值就是进行划分的基准值key,所以在划分结束时还要将下标为pos的数组元素赋值 为 key。