导航:首页 > 源码编译 > 退火算法原理matlab

退火算法原理matlab

发布时间:2023-09-29 18:56:01

❶ 谁能给我举一个模拟退火算法MATLAB源代码的简单例子

clear
clc
a = 0.95
k = [5;10;13;4;3;11;13;10;8;16;7;4];
k = -k; % 模拟退火算法是求解最小值,故取负数
d = [2;5;18;3;2;5;10;4;11;7;14;6];
restriction = 46;
num = 12;
sol_new = ones(1,num); % 生成初始解
E_current = inf;E_best = inf;
% E_current是当前解对应的目标函数值(即背包中物品总价值);
% E_new是新解的目标函数值;
% E_best是最优解的
sol_current = sol_new; sol_best = sol_new;
t0=97; tf=3; t=t0;
p=1;

while t>=tf
for r=1:100
%产生随机扰动
tmp=ceil(rand.*num);
sol_new(1,tmp)=~sol_new(1,tmp);

%检查是否满足约束
while 1
q=(sol_new*d <= restriction);
if ~q
p=~p; %实现交错着逆转头尾的第一个1
tmp=find(sol_new==1);
if p
sol_new(1,tmp)=0;
else
sol_new(1,tmp(end))=0;
end
else
break
end
end

% 计算背包中的物品价值
E_new=sol_new*k;
if E_new<E_current
E_current=E_new;
sol_current=sol_new;
if E_new<E_best
% 把冷却过程中最好的解保存下来
E_best=E_new;
sol_best=sol_new;
end
else
if rand<exp(-(E_new-E_current)./t)
E_current=E_new;
sol_current=sol_new;
else
sol_new=sol_current;
end
end
end
t=t.*a;
end

disp('最优解为:')
sol_best
disp('物品总价值等于:')
val=-E_best;
disp(val)
disp('背包中物品重量是:')
disp(sol_best * d)

❷ 求一个模拟退火算法优化BP神经网络的一个程序(MATLAB)

“模拟退火”算法是源于对热力学中退火过程的模拟,在某一给定初温下,通过缓慢下降温度参数,使算法能够在多项式时间内给出一个近似最优解。退火与冶金学上的‘退火’相似,而与冶金学的淬火有很大区别,前者是温度缓慢下降,后者是温度迅速下降。

“模拟退火”的原理也和金属退火的原理近似:我们将热力学的理论套用到统计学上,将搜寻空间内每一点想象成空气内的分子;分子的能量,就是它本身的动能;而搜寻空间内的每一点,也像空气分子一样带有“能量”,以表示该点对命题的合适程度。算法先以搜寻空间内一个任意点作起始:每一步先选择一个“邻居”,然后再计算从现有位置到达“邻居”的概率。


这个算法已经很多人做过,可以优化BP神经网络初始权值。附件是解决TSP问题的matlab代码,可供参考。看懂了就可以自己编程与bp代码结合。

❸ MATLAB模拟退火求解最优化问题时每次的结果都不一样,如何解决回答后适当加分

模拟退火算法,蚁群算法和遗传算法都是启发式随机搜索算法,这种算法理论上式不可能得到最优解的,只能去接近它,由于初始解是随机的,所以每次运行结果必然是不一样的。根据你问题的规模运行数十次和数百次,然后求平均值,可以判断你的算法优劣。

❹ 模拟退火算法的模拟退火算法的原理

模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e(-ΔE/(kT)),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schele)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。 1模拟退火算法可以分解为解空间、目标函数和初始解三部分。
2模拟退火的基本思想:
(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T值的迭代次数L
(2) 对k=1,……,L做第(3)至第6步:
(3) 产生新解S′
(4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数
(5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.
(6) 如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
(7) T逐渐减少,且T->0,然后转第2步。 模拟退火算法新解的产生和接受可分为如下四个步骤:
第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
第二步是计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。事实表明,对大多数应用而言,这是计算目标函数差的最快方法。
第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropolis准则: 若Δt′<0则接受S′作为新的当前解S,否则以概率exp(-Δt′/T)接受S′作为新的当前解S。
第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代。可在此基础上开始下一轮试验。而当新解被判定为舍弃时,则在原当前解的基础上继续下一轮试验。
模拟退火算法与初始值无关,算法求得的解与初始解状态S(是算法迭代的起点)无关;模拟退火算法具有渐近收敛性,已在理论上被证明是一种以概率l 收敛于全局最优解的全局优化算法;模拟退火算法具有并行性。 s:=s0;e:=E(s)//设定目前状态为s0,其能量E(s0)k:=0//评估次数kwhilek<kmaxande>emax//若还有时间(评估次数k还不到kmax)且结果还不够好(能量e不够低)则:sn:=neighbour(s)//随机选取一临近状态snen:=Esn)//sn的能量为E(sn)ifrandom()<P(e,en,temp(k/kmax))then//决定是否移至临近状态sns:=sn;e:=en//移至临近状态snk:=k+1//评估完成,次数k加一returns//回转状态s

阅读全文

与退火算法原理matlab相关的资料

热点内容
明日之后安卓太卡怎么办 浏览:502
如何使用命令方块找到村庄 浏览:766
泛函压缩映像原理 浏览:521
win10清除文件夹浏览记录 浏览:964
如何查看服务器域中所有服务 浏览:384
学mastercam91编程要多久 浏览:999
如何查服务器地址和端口 浏览:911
教学云平台app怎么下载 浏览:389
单片机510教学视频 浏览:624
陕西信合app怎么查看自己的存款 浏览:663
风冷冰箱有压缩机 浏览:274
android实现wifi连接wifi 浏览:669
飞猪app怎么帮别人值机 浏览:924
笔记本开我的世界服务器地址 浏览:546
怎样隐藏bat命令 浏览:127
android开发创意 浏览:138
京剧猫为什么进不去服务器 浏览:784
怎么自己免费制作一个手机app 浏览:582
python同时迭代两个变量 浏览:740
好分数app家长版怎么删除孩子 浏览:426