㈠ 10个常用算法
原理:
二分法查找,也称为折半法,是一种在有序数组中查找特定元素的搜索算法。
一般步骤:
(1)确定该区间的中间位置K;
(2)将查找的值T与array[k]比较。
若相等,查找成功返回此位置;否则确定新的查找区域,继续二分查找。每一次查找与中间值比较,可以确定是否查找成功,不成功当前查找区间将缩小一半,递归查找即可。
原理:
一种通过重复将问题分解为同类的子问题而解决问题的方法
典型例子:
斐波那契数列
描述: 斐波那契数列 指的是这样一个数列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368.....自然中的斐波那契数列") 自然中的斐波那契数列,这个数列从第3项开始,每一项都等于前两项之和。
解决方式:
原理:
在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。
回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。
但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。
解决问题一般步骤:
1、 针对所给问题,定义问题的解空间,它至少包含问题的一个(最优)解。
2 、确定易于搜索的解空间结构,使得能用回溯法方便地搜索整个解空间 。
3 、以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索。
典型例子:
八皇后问题
描述:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。
解决方式: https://blog.csdn.net/weixin_41865447/article/details/80034433
概念:
将杂乱无章的数据元素,通过一定的方法按关键字顺序排列的过程叫做排序。
分类:
非稳定排序算法:快速排序、希尔排序、堆排序、直接选择排序
稳定的排序算法:基数排序、冒泡排序、直接插入排序、折半插入排序、归并排序
十个常用排序算法
利用计算机的高性能来有目的的穷举一个问题解空间的部分或所有的可能情况,从而求出问题的解的一种方法。
分类:
枚举算法、深度优先搜索、广度优先搜索、A*算法、回溯算法、蒙特卡洛树搜索、散列函数等算法。
将一个数据转换为一个标志,这个标志和源数据的每一个字节都有十分紧密的关系。
很难找到逆向规律
只要符合散列思想的算法都可以被称为是Hash算法
对不同的关键字可能得到同一散列地址,即key1≠key2,而f(key1)=f(key2),这种现象称为 碰撞 。
原理
在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的是在 某种意义上的局部最优解 。
从问题的某一个初始解出发一步一步地进行,根据某个优化测度,每一步都要确保能获得局部最优解。每一步只考虑一个数据,他的选取应该满足局部优化的条件。若下一个数据和部分最优解连在一起不再是可行解时,就不把该数据添加到部分解中,直到把所有数据枚举完,或者不能再添加算法停止。
一种近似算法
一般步骤:
1、建立数学模型来描述问题;
2、把求解的问题分成若干个子问题;
3、对每一子问题求解,得到子问题的局部最优解;
4、把子问题的解局部最优解合成原来解问题的一个解。
典型例子:
0/1背包问题
马踏棋盘
均分纸牌
例题: https://www.cnblogs.com/hust-chen/p/8646009.html
概念:
分治算法的基本思想是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题相互独立且与原问题性质相同。求出子问题的解,就可得到原问题的解。即一种分目标完成程序算法,简单问题可用二分法完成。
一般步骤:
(1)分解,将要解决的问题划分成若干规模较小的同类问题;
(2)求解,当子问题划分得足够小时,用较简单的方法解决;
(3)合并,按原问题的要求,将子问题的解逐层合并构成原问题的解。
典型例子:
排序中:归并排序、堆排序、快速排序;
实例:找伪币、求最值、棋盘覆盖
https://ke..com/item/%E5%88%86%E6%B2%BB%E7%AE%97%E6%B3%95/3263297
概念:
用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。
动态规划一般可分为线性动规,区域动规,树形动规,背包动规四类。
举例:
线性动规:拦截导弹,合唱队形,挖地雷,建学校,剑客决斗等;
区域动规:石子合并, 加分二叉树,统计单词个数,炮兵布阵等;
树形动规:贪吃的九头龙,二分查找树,聚会的欢乐,数字三角形等;
背包问题:01背包问题,完全背包问题,分组背包问题,二维背包,装箱问题,挤牛奶(同济)等;
应用实例:
最短路径问题 ,项目管理,网络流优化等;
https://ke..com/item/%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92/529408?fromtitle=%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%E7%AE%97%E6%B3%95&fromid=15742703&fr=aladdin
概念:
在一个给定的字符文本内搜寻出自己想要找的一个字符串,平常所用的各种文本编辑器里的ctrl+F大多就是使用的这些字符匹配算法。
分类:
KMP、BM、Sunday、Horspool、RK
参考:
https://cloud.tencent.com/developer/news/282694
https://blog.csdn.net/paincupid/article/details/81159320
㈡ 数学建模建模分为几种类型,分别用什么法求解
数学建模应当掌握的十类算法
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算
法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要
处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题
属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、
Lingo软件实现)
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉
及到图论的问题可以用这些方法解决,需要认真准备)
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计
中比较常用的方法,很多场合可以用到竞赛中)
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是
用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实
现比较困难,需慎重使用)
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛
题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好
使用一些高级语言作为编程工具)
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只
认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非
常重要的)
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常
用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调
用)
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该
要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab
进行处理)
㈢ 数学建模建模分为几种类型,分别用什么法求解
数学建模应当掌握的十类算法
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算 法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要 处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题 属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、 Lingo软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉 及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计 中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是 用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实 现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛 题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好 使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只 认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非 常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常 用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调 用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该 要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab 进行处理)
㈣ 皇后问题为什么能同时求出多个解
N皇后问题是一个经典的问题,在一个N*N的棋盘上放置N个皇后,每行一个并使其不能互相攻击(同一行、同一列、同一斜线上的皇后都会自动攻击)。
一、 求解N皇后问题是算法中回溯法应用的一个经典案例
回溯算法也叫试探法,它是一种系统地搜索问题的解的方法。回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。
在现实中,有很多问题往往需要我们把其所有可能穷举出来,然后从中颤前宏找出满足某种要求的可能或最优的情况,从而得到整个问题的解。回溯算法就是解决这种问题的“通用算法”,有“万能算法”之称。N皇后问题在N增大时就是这样一个解空间很大的问题,所以比较适合用这种方法求解。这也是N皇后问题的传统解法,很经典。
下面是算法的高级伪码描述,这里用一个N*N的矩阵来存储棋盘:
1) 算法开始, 清空棋盘,当前行设为第一行,当前列设为第一列
2) 在当前行,当前列的位置上判断是否满足条件(即保证经过这一点的行,列与斜线上都没有两个皇后),若不满足,跳到第4步
3) 在当前位置上满足条件的情形:
在当前位置放一个皇后,若当前行是最后一行,记录一个解;
若当前行不是最后一行,当前行设为下一行, 当前列设为当前行的第一个待测位置;
若当前行是最后一行,当前列不是最后一列,当前列设为下一列;
若当前行是最后一行,当前列是最后茄册一列,回溯,即清空当前行及以下各行的棋盘,然后,当前行设为上一行,当前列设为当前行的下一个待测位置;
以上返回到第2步
4) 在当前位置上不满足条件的情形:
若当前列不是最后一列,当前列设为下一列,返回到第2步;
若当前列是最后一列了,回溯,即,若当前行已经是第一行了,算法退出,否则,清空当前行及以下各行的棋盘,然后,当前行设为上一行,当前列设为当前行的下一个待测位置,返回到第2步;
算法的基本原理是上面这个样子,但不同的是用的数据结构不同,检查某个位置是否满足条件的方法也不同。为了提高效率,有各种优化策略,如多线程,多分配内存表示棋盘等。
在具体解决该问题时,可以将其拆分为几个小问题。首先就是在棋盘上如何判断两个皇后是否能够相互攻击,在最初接触这个问题时,首先想到的方法就是把棋盘存储为一个二维数组,然后在需要在第i行第j列放置皇后时,根据问题的描述,首先判断是在第i行是否有皇后,由于每行只有一个皇后,这个判断也可以省略,然后判断第j列是否有皇后,这个也很简单,最后需要判断在同一斜线上是否有皇后,按照该方法需要判断两次,正对角线方向和负对角线方向,总体来说也不难。但是写完之后,总感觉很笨,因为在N皇后问题中这个函数的使用次数太多了,而这样做效率较差,个人感觉很不爽。上网查看了别人的实现之后大吃一惊,大牛们都是使用一个一维数组来存储棋盘,在某个位置上是否有皇后可以相互攻击的判断也很简单。具体细节如下:
把棋盘存储为一个N维数组a[N],数组中第i个元素的值代表第i行的皇后位置,这样便可以把问题的空间规模压缩为一维O(N),在判断是否冲突时也很简单,首先每行只有一个皇后,且在数组中只占据一个元素的位置,行冲突就不存在了,其次是列冲突,判断一下是否有a[i]与当前要放置皇后的列j相等即可。至于斜线冲突,通过观察可以发现所有在斜线上冲突的皇后的位置都有悔或规律即它们所在的行列互减的绝对值相等,即| row – i | = | col – a[i] | 。这样某个位置是否可以放置皇后的问题已经解决。
㈤ 回溯算法与贪心算法
回溯是递归的副产品,只要有递归就会有回溯 ,所以回溯法也经常和二叉树遍历,深度优先搜索混在一起,因为这两种方式都是用了递归。
回溯法就是暴力搜索,并不是什么高效的算法,最多再剪枝一下。
回溯算法能解决如下问题:
组合问题:N个数里面按一定规则找出k个数的集合
排列问题:N个数按一定规则全排列,有几种排列方式
切割问题:一个字符串按一定规则有几种切割方式
子集问题:一个N个数的集合里有多少符合条件的子集
棋盘问题:N皇后,解数独等等
回溯算法的本质是纵向遍历
回溯算法模板为
贪心的本质是选择每一阶段的局部最优,从而达到全局最优
贪心算法一般分为如下四步:
将问题分解为若干个子问题
找出适合的贪心策略
求解每一个子问题的最优解
将局部最优解堆叠成全局最优解
eg:摆动序列
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。
例如, [1,7,4,9,2,5] 是一个摆动序列,因为差值 (6,-3,5,-7,3) 是正负交替出现的。相反, [1,4,7,2,5] 和 [1,7,4,5,5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。
示例 2:
输入: [1,17,5,10,13,15,10,5,16,8]
输出: 7
解释: 这个序列包含几个长度为 7 摆动序列,其中一个可为[1,17,10,13,10,16,8]。
㈥ 应用问题求解,加油站有效加油位问题!
1.已知有
3
个物品:(w1,w2,w3)=(12,10,6),(p1,p2,p3)=(15,13,10),背包的容积
M=20,根据
0-1
背
包动态规划的递推式求出最优解。
2.按要求完成以下关于排序和查找的问题。
①对数组
A={15,29,135,18,32,1,27,25,5},用快速排序方法将其排成递减序。
②请描述递减数组进行二分搜索的基本思想,并给出非递归算法。
③给出上述算法的递归算法。
④使用上述算法对①所得到的结果搜索如下元素,并给出搜索过程:18,31,135。
3.已知
1
(
)
*
(
)
i
i
k
k
ij
r
r
A
a
+
=
,
k
=1,2,3,4,5,6,
r
1
=5,
r
2
=10,
r
3
=3,
r
4
=12,
r
5
=5,
r
6
=50,
r
7
=6,
求矩阵链积
A
1
×A
2
×A
3
×A
4
×A
5
×A
6
的最佳求积顺序(要求给出计算步骤)
。
4.
根
据
分
枝
限
界
算
法
基
本
过
程
,
求
解
0-1
背
包
问
题
。
已
知
n=3,M=20
,
(w1,w2,w3)=(12,10,6),(p1,p2,p3)=(15,13,10)。
5.试用贪心算法求解汽车加油问题:
已知一辆汽车加满油后可行驶
n
公里,
而旅途中有若干个加油站。
试设计一个有效算法,指出应在哪些加油站停靠加油,使加油次数最少,请写出该算法。
6.试用动态规划算法实现下列问题:设
A
和
B
是两个字符串。我们要用最少的字符操作,将字符串
A
转换为字符串
B,这里所说的字符操作包括:
①删除一个字符。
②插入一个字符。
③将一个字符改为另一个字符。
请写出该算法。
7.对于下图使用
Dijkstra
算法求由顶点
a
到顶点
h
的最短路径。
8.试写出用分治法对数组
A[n]实现快速排序的算法。
9.有
n
个活动争用一个活动室。
已知活动
i
占用的时间区域为[s
i
,
f
i
],
活动
i,j
相容的条件是:
sj≥f
i
,问题的解表示为(x
i
|
x
i
=1,2…,n,),x
i
表示顺序为
i
的活动编号活动,求一个相容的活动子
集,且安排的活动数目最多。
10.设
x
1
、
x
2
、
x
3
是一个三角形的三条边,而且
x
1
+x
2
+x
3
=14。请问有多少种不同的三角形?给出解答过
程。
11.设数组
A
有
n
个元素,需要找出其中的最大最小值。
①请给出一个解决方法,并分析其复杂性。
②把
n
个元素等分为两组
A1
和
A2,分别求这两组的最大值和最小值,然后分别将这两组的最大值
和最小值相比较,求出全部元素的最大值和最小值。如果
A1
和
A2
中的元素多于两个,则再用上述
方法各分为两个子集。直至子集中元素至多两个元素为止。这是什么方法的思想?请给出该方法的
算法描述,并分析其复杂性。
12.有
n
个程序和长度为
L
的磁带,
程序
i
的长度为
a
i
,
已知
L
a
n
i
i
≻
∑
=
1
,
求最优解(x
i
,
x
2
,
...,
x
i
,
…,
x
n
),x
i
=0,1,
x
i
=1,表示程序
i
存入磁带,x
i
=0,表示程序
i
不存入磁带,满足
L
a
x
n
i
i
i
≤
∑
=
1
,
且存放的程序数目最多。
13.试用分治法实现有重复元素的排列问题:设
)
,...,
,
{
2
1
n
r
r
r
R
=
是要进行排列的
n
个元素,其中元素
n
r
r
r
,...,
,
2
1
可能相同,试设计计算
R
的所有不同排列的算法。
14.试用动态规划算法实现
0-1
闭包问题,请写出该算法。
15.试用贪心算法求解下列问题:将正整数
n
分解为若干个互不相同的自然数之和,使这些自然数的乘
积最大,请写出该算法。
16.试写出用分治法对一个有序表实现二分搜索的算法。
17.试用动态规划算法实现最长公共子序列问题,请写出该算法。
18.假设有
7
个物品,它们的重量和价值如下表所示。若这些物品均不能被分割,且背包容量
M=150,
使用回溯方法求解此背包问题,请写出状态空间搜索树。
物品
A
B
C
D
E
F
G
重量
35
30
60
50
40
10
25
价值
10
40
30
50
35
40
30
19.求解子集和问题:对于集合
S={1,2
,6,8},求子集,要求该子集的元素之和
d=9。
①画出子集和问题的解空间树;
②该树运用回溯算法,写出依回溯算法遍历节点的顺序;
③如果
S
中有
n
个元素,指定
d,用伪代码描述求解子集和问题的回溯算法。
20.求解填字游戏问题:在
3×3
个方格的方阵中要填入数字
1
到
N(N≥10)内的某
9
个数字,每个方
格填一个整数,似的所有相邻两个方格内的两个整数之和为质数。试采用回溯法写出满足这个要求
的一种数字填法的算法和满足这个要求的全部数字填法的算法。
21.试用动态规划算法实现最大子矩阵和问题:
求
n
m
×
矩阵
A
的一个子矩阵,
使其各元素之和为最大。
22.试用回溯法解决下列整数变换问题:关于整数
i
的变换
f
和
g
定义如下:
⎣
⎦
2
/
)
(
;
3
)
(
i
i
g
i
i
f
=
=
。
对于给定的两个整数
n
和
m
,要求用最少的变换
f
和
g
变换次数将
n
变为
m
。
23.关于
15
谜问题。在一个
4×4
的方格的棋盘上,将数字
1
到
15
代表的
15
个棋子以任意的顺序置入
各方格中,空出一格。要求通过有限次的移动,把一个给定的初始状态变成目标状态。移动的规则
是:每次只能把空格周围的四格数字(棋子)中的任意一个移入空格,从而形成一个新的状态。为
了有效的移动,设计了估值函数
C
1
(x),表示在结点
x
的状态下,没有到达目标状态下的正确位置
的棋子的个数。