⑴ 矩阵A的n次方怎么求呢
一般有以下几种方法:
1、计算A^2,A^3 找规律,然后用归纳法证明。
2、若r(A)=1,则A=αβ^T,A^n=(β^Tα)^(n-1)A
注:β^Tα =α^Tβ = tr(αβ^T)
3、分拆法:A=B+C,BC=CB,用二项式公式展开。
适用于 B^n 易计算,C的低次幂为零:C^2 或 C^3 = 0
4、用对角化 A=P^-1diagP
A^n = P^-1diag^nP
(1)a的n次方的快速算法文库扩展阅读:
将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积,矩阵的分解法一般有三角分解、谱分解、奇异值分解、满秩分解等。
在线性代数中,相似矩阵是指存在相似关系的矩阵。相似关系是两个矩阵之间的一种等价关系。两个n×n矩阵A与B为相似矩阵当且仅当存在一个n×n的可逆矩阵P。
一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。通俗一点说,如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。
⑵ 一个数的n次方怎么计算
一个数的n次方的计算方法:
1、n很小的整数时,将这个数自乘n次即可.
例如:2的5次方就是2×2×2×2×2=32
2、当n为较大可将n因数分解x*y时,可分两步算a^n=a^(x*y)=(a^x)^y
例如:10^15=10^(3*5)=(10^3)^5=1000^5=10^15
次方最基本的定义是:设a为某数,n为正整数,a的n次方表示为aⁿ,表示n个a连乘所得之结果,如2⁴=2×2×2×2=16。次方的定义还可以扩展到0次方和负数次方等等。
在电脑上输入数学公式时,因为不便于输入乘方,符号“^”也经常被用来表示次方。例如2的5次方通常被表示为2^5。
0与正数次方
一个数的零次方
任何非零数的0次方都等于1。原因如下
通常代表3次方
5的3次方是125,即5×5×5=125
5的2次方是25,即5×5=25
5的1次方是5,即5×1=5
由此可见,n≧0时,将5的(n+1)次方变为5的n次方需除以一个5,所以可定义5的0次方为:
5 ÷ 5 = 1
0的次方
0的任何正数次方都是0,例:0⁵=0×0×0×0×0=0
0的0次方无意义。
⑶ 求出a的n次运算的公式
(ab)^n=ab*ab*ab*ab*ab.....=a*a*a*a...*b*b*b*b...=a^n*b^n。
乘方的积等于积的乘方”可得:(a^n)x(b^n)=(axb)^n=(ab)^n。
求一个数a的n次方根的运算叫做开n次方,a叫做被开方数,n叫做根指数。