导航:首页 > 源码编译 > 怎么学习算法视频

怎么学习算法视频

发布时间:2023-09-30 22:36:07

python自学视频哪里有

先给你个课程大纲,如果是你想学的内容,可以找我要视频
阶段一:Python开发基础
Python全栈开发与人工智能之Python开发基础知识学习内容包括:Python基础语法、数据类型、字符编码、文件操作、函数、装饰器、迭代器、内置方法、常用模块等。
阶段二:Python高级编程和数据库开发
Python全栈开发与人工智能之Python高级编程和数据库开发知识学习内容包括:面向对象开发、Socket网络编程、线程、进程、队列、IO多路模型、Mysql数据库开发等。
阶段三:前端开发
Python全栈开发与人工智能之前端开发知识学习内容包括:Html、CSS、javaScript开发、Jquery&bootstrap开发、前端框架VUE开发等。
阶段四:WEB框架开发
Python全栈开发与人工智能之WEB框架开发学习内容包括:Django框架基础、Django框架进阶、BBS+Blog实战项目开发、缓存和队列中间件、Flask框架学习、Tornado框架学习、Restful API等。
阶段五:爬虫开发
Python全栈开发与人工智能之爬虫开发学习内容包括:爬虫开发实战。
阶段六:全栈项目实战
Python全栈开发与人工智能之全栈项目实战学习内容包括:企业应用工具学习、CRM客户关系管理系统开发、路飞学城在线教育平台开发等。
阶段七:数据分析
Python全栈开发与人工智能之数据分析学习内容包括:金融量化分析。
阶段八:人工智能
Python全栈开发与人工智能之人工智能学习内容包括:机器学习、数据分析 、图像识别、自然语言翻译等。
阶段九:自动化运维&开发
Python全栈开发与人工智能之自动化运维&开发学习内容包括:CMDB资产管理系统开发、IT审计+主机管理系统开发、分布式主机监控系统开发等。
阶段十:高并发语言GO开发
Python全栈开发与人工智能之高并发语言GO开发学习内容包括:GO语言基础、数据类型与文件IO操作、函数和面向对象、并发编程等。

算法怎么学

贪心算法的定义:

贪心算法是指在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,只做出在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关。

解题的一般步骤是:

1.建立数学模型来描述问题;

2.把求解的问题分成若干个子问题;

3.对每一子问题求解,得到子问题的局部最优解;

4.把子问题的局部最优解合成原来问题的一个解。

如果大家比较了解动态规划,就会发现它们之间的相似之处。最优解问题大部分都可以拆分成一个个的子问题,把解空间的遍历视作对子问题树的遍历,则以某种形式对树整个的遍历一遍就可以求出最优解,大部分情况下这是不可行的。贪心算法和动态规划本质上是对子问题树的一种修剪,两种算法要求问题都具有的一个性质就是子问题最优性(组成最优解的每一个子问题的解,对于这个子问题本身肯定也是最优的)。动态规划方法代表了这一类问题的一般解法,我们自底向上构造子问题的解,对每一个子树的根,求出下面每一个叶子的值,并且以其中的最优值作为自身的值,其它的值舍弃。而贪心算法是动态规划方法的一个特例,可以证明每一个子树的根的值不取决于下面叶子的值,而只取决于当前问题的状况。换句话说,不需要知道一个节点所有子树的情况,就可以求出这个节点的值。由于贪心算法的这个特性,它对解空间树的遍历不需要自底向上,而只需要自根开始,选择最优的路,一直走到底就可以了。

话不多说,我们来看几个具体的例子慢慢理解它:

1.活动选择问题

这是《算法导论》上的例子,也是一个非常经典的问题。有n个需要在同一天使用同一个教室的活动a1,a2,…,an,教室同一时刻只能由一个活动使用。每个活动ai都有一个开始时间si和结束时间fi 。一旦被选择后,活动ai就占据半开时间区间[si,fi)。如果[si,fi]和[sj,fj]互不重叠,ai和aj两个活动就可以被安排在这一天。该问题就是要安排这些活动使得尽量多的活动能不冲突的举行。例如下图所示的活动集合S,其中各项活动按照结束时间单调递增排序。

关于贪心算法的基础知识就简要介绍到这里,希望能作为大家继续深入学习的基础。

❸ 算法工程师应该学哪些

一、算法工程师简介
(通常是月薪15k以上,年薪18万以上,只是一个概数,具体薪资可以到招聘网站如拉钩,猎聘网上看看)
算法工程师目前是一个高端也是相对紧缺的职位;
算法工程师包括
音/视频算法工程师(通常统称为语音/视频/图形开发工程师)、图像处理算法工程师、计算机视觉算法工程师、通信基带算法工程师、信号算法工程师、射频/通信算法工程师、自然语言算法工程师、数据挖掘算法工程师、搜索算法工程师、控制算法工程师(云台算法工程师,飞控算法工程师,机器人控制算法)、导航算法工程师(
@之介
感谢补充)、其他【其他一切需要复杂算法的行业】
专业要求:计算机、电子、通信、数学等相关专业;
学历要求:本科及其以上的学历,大多数是硕士学历及其以上;
语言要求:英语要求是熟练,基本上能阅读国外专业书刊,做这一行经常要读论文;
必须掌握计算机相关知识,熟练使用仿真工具MATLAB等,必须会一门编程语言。
算法工程师的技能树(不同方向差异较大,此处仅供参考)
1 机器学习
2 大数据处理:熟悉至少一个分布式计算框架Hadoop/Spark/Storm/ map-rece/MPI
3 数据挖掘
4 扎实的数学功底
5 至少熟悉C/C++或者Java,熟悉至少一门编程语言例如java/python/R
加分项:具有较为丰富的项目实践经验(不是水论文的哪种)
二、算法工程师大致分类与技术要求
(一)图像算法/计算机视觉工程师类
包括
图像算法工程师,图像处理工程师,音/视频处理算法工程师,计算机视觉工程师
要求
l
专业:计算机、数学、统计学相关专业;
l
技术领域:机器学习,模式识别
l
技术要求:
(1) 精通DirectX HLSL和OpenGL GLSL等shader语言,熟悉常见图像处理算法GPU实现及优化;
(2) 语言:精通C/C++;
(3) 工具:Matlab数学软件,CUDA运算平台,VTK图像图形开源软件【医学领域:ITK,医学图像处理软件包】
(4) 熟悉OpenCV/OpenGL/Caffe等常用开源库;
(5) 有人脸识别,行人检测,视频分析,三维建模,动态跟踪,车识别,目标检测跟踪识别经历的人优先考虑;
(6) 熟悉基于GPU的算法设计与优化和并行优化经验者优先;
(7) 【音/视频领域】熟悉H.264等视频编解码标准和FFMPEG,熟悉rtmp等流媒体传输协议,熟悉视频和音频解码算法,研究各种多媒体文件格式,GPU加速;
应用领域:
(1) 互联网:如美颜app
(2) 医学领域:如临床医学图像
(3) 汽车领域
(4) 人工智能
相关术语:
(1) OCR:OCR (Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程
(2) Matlab:商业数学软件;
(3) CUDA: (Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台(由ISA和GPU构成)。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题
(4) OpenCL: OpenCL是一个为异构平台编写程序的框架,此异构平台可由CPU,GPU或其他类型的处理器组成。
(5) OpenCV:开源计算机视觉库;OpenGL:开源图形库;Caffe:是一个清晰,可读性高,快速的深度学习框架。
(6) CNN:(深度学习)卷积神经网络(Convolutional Neural Network)CNN主要用来识别位移、缩放及其他形式扭曲不变性的二维图形。
(7) 开源库:指的是计算机行业中对所有人开发的代码库,所有人均可以使用并改进代码算法。
(二)机器学习工程师
包括
机器学习工程师
要求
l
专业:计算机、数学、统计学相关专业;
l
技术领域:人工智能,机器学习
l
技术要求:
(1) 熟悉Hadoop/Hive以及Map-Rece计算模式,熟悉Spark、Shark等尤佳;
(2) 大数据挖掘;
(3) 高性能、高并发的机器学习、数据挖掘方法及架构的研发;
应用领域:
(1)人工智能,比如各类仿真、拟人应用,如机器人
(2)医疗用于各类拟合预测
(3)金融高频交易
(4)互联网数据挖掘、关联推荐
(5)无人汽车,无人机

相关术语:
(1) Map-Rece:MapRece是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Rece(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。
(三)自然语言处理工程师
包括
自然语言处理工程师
要求
l
专业:计算机相关专业;
l
技术领域:文本数据库
l
技术要求:
(1) 熟悉中文分词标注、文本分类、语言模型、实体识别、知识图谱抽取和推理、问答系统设计、深度问答等NLP 相关算法;
(2) 应用NLP、机器学习等技术解决海量UGC的文本相关性;
(3) 分词、词性分析、实体识别、新词发现、语义关联等NLP基础性研究与开发;
(4) 人工智能,分布式处理Hadoop;
(5) 数据结构和算法;
应用领域:
口语输入、书面语输入
、语言分析和理解、语言生成、口语输出技术、话语分析与对话、文献自动处理、多语问题的计算机处理、多模态的计算机处理、信息传输与信息存储 、自然语言处理中的数学方法、语言资源、自然语言处理系统的评测。

相关术语:
(2) NLP:人工智能的自然语言处理,NLP (Natural Language Processing) 是人工智能(AI)的一个子领域。NLP涉及领域很多,最令我感兴趣的是“中文自动分词”(Chinese word segmentation):结婚的和尚未结婚的【计算机中却有可能理解为结婚的“和尚“】

(四)射频/通信/信号算法工程师类
包括
3G/4G无线通信算法工程师, 通信基带算法工程师,DSP开发工程师(数字信号处理),射频通信工程师,信号算法工程师
要求
l
专业:计算机、通信相关专业;
l
技术领域:2G、3G、4G,BlueTooth(蓝牙),WLAN,无线移动通信, 网络通信基带信号处理
l
技术要求:
(1) 了解2G,3G,4G,BlueTooth,WLAN等无线通信相关知识,熟悉现有的通信系统和标准协议,熟悉常用的无线测试设备;
(2) 信号处理技术,通信算法;
(3) 熟悉同步、均衡、信道译码等算法的基本原理;
(4) 【射频部分】熟悉射频前端芯片,扎实的射频微波理论和测试经验,熟练使用射频电路仿真工具(如ADS或MW或Ansoft);熟练使用cadence、altium designer PCB电路设计软件;
(5) 有扎实的数学基础,如复变函数、随机过程、数值计算、矩阵论、离散数学
应用领域:
通信
VR【用于快速传输视频图像,例如乐客灵境VR公司招募的通信工程师(数据编码、流数据)】
物联网,车联网
导航,军事,卫星,雷达
相关术语:
(1) 基带信号:指的是没有经过调制(进行频谱搬移和变换)的原始电信号。
(2) 基带通信(又称基带传输):指传输基带信号。进行基带传输的系统称为基带传输系统。传输介质的整个信道被一个基带信号占用.基带传输不需要调制解调器,设备化费小,具有速率高和误码率低等优点,.适合短距离的数据传输,传输距离在100米内,在音频市话、计算机网络通信中被广泛采用。如从计算机到监视器、打印机等外设的信号就是基带传输的。大多数的局域网使用基带传输,如以太网、令牌环网。
(3) 射频:射频(RF)是Radio Frequency的缩写,表示可以辐射到空间的电磁频率(电磁波),频率范围从300KHz~300GHz之间(因为其较高的频率使其具有远距离传输能力)。射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。高频(大于10K);射频(300K-300G)是高频的较高频段;微波频段(300M-300G)又是射频的较高频段。【有线电视就是用射频传输方式】
(4) DSP:数字信号处理,也指数字信号处理芯片
(五)数据挖掘算法工程师类
包括
推荐算法工程师,数据挖掘算法工程师
要求
l
专业:计算机、通信、应用数学、金融数学、模式识别、人工智能;
l
技术领域:机器学习,数据挖掘
l
技术要求:
(1) 熟悉常用机器学习和数据挖掘算法,包括但不限于决策树、Kmeans、SVM、线性回归、逻辑回归以及神经网络等算法;
(2) 熟练使用SQL、Matlab、Python等工具优先;
(3) 对Hadoop、Spark、Storm等大规模数据存储与运算平台有实践经验【均为分布式计算框架】
(4) 数学基础要好,如高数,统计学,数据结构
l
加分项:数据挖掘建模大赛;
应用领域
(1) 个性化推荐
(2) 广告投放
(3) 大数据分析
相关术语
Map-Rece:MapRece是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Rece(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。
(六)搜索算法工程师
要求
l
技术领域:自然语言
l
技术要求:
(1) 数据结构,海量数据处理、高性能计算、大规模分布式系统开发
(2) hadoop、lucene
(3) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验
(4) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验;
(5) 精通倒排索引、全文检索、分词、排序等相关技术;
(6) 熟悉Java,熟悉Spring、MyBatis、Netty等主流框架;
(7) 优秀的数据库设计和优化能力,精通MySQL数据库应用 ;
(8) 了解推荐引擎和数据挖掘和机器学习的理论知识,有大型搜索应用的开发经验者优先。
(七)控制算法工程师类
包括了云台控制算法,飞控控制算法,机器人控制算法
要求
l
专业:计算机,电子信息工程,航天航空,自动化
l
技术要求:
(1) 精通自动控制原理(如PID)、现代控制理论,精通组合导航原理,姿态融合算法,电机驱动,电机驱动
(2) 卡尔曼滤波,熟悉状态空间分析法对控制系统进行数学模型建模、分析调试;
l
加分项:有电子设计大赛,机器人比赛,robocon等比赛经验,有硬件设计的基础;
应用领域
(1)医疗/工业机械设备
(2)工业机器人
(3)机器人
(4)无人机飞控、云台控制等

(八)导航算法工程师
要求
l 专业:计算机,电子信息工程,航天航空,自动化
l 技术要求(以公司职位JD为例)
公司一(1)精通惯性导航、激光导航、雷达导航等工作原理;
(2)精通组合导航算法设计、精通卡尔曼滤波算法、精通路径规划算法;
(3)具备导航方案设计和实现的工程经验;
(4)熟悉C/C++语言、熟悉至少一种嵌入式系统开发、熟悉Matlab工具;
公司二(1)熟悉基于视觉信息的SLAM、定位、导航算法,有1年以上相关的科研或项目经历;
(2)熟悉惯性导航算法,熟悉IMU与视觉信息的融合;
应用领域
无人机、机器人等。

❹ 在哪里可以学习算法求推荐呀

算法的空间复杂度是指算法需要消耗的内存空间。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。去慕课网吧

❺ 方法不对,看再多书你都学不会算法


在计算机科学中,算法通常是指一个解决问题的小程序。算法是程序的基本组成部分,如果你想让你的程序能够解决一切问题,你必须懂算法,这就是为什么算法在计算机编程中如此重要的原因。


如果你是一名初学者,你就必须从基础开始,从理解算法背后的基本概念开始,然后自己一个个地实现它们,在本文中,将和大家分享几种最适合初学的算法学习方法,不要再只会死读算法书啦,这样你永远都学不好算法



1、阅读书籍


毋庸置疑,书籍是学习一切知识的最好资源,它不仅能让你详细和准确地了解算法,还能帮助你按照自己的节奏学习,拿一本关于算法的好书,试着理解算法背后的理论概念。之后再去程序中实现算法。如果你失败了,别担心,书就在那里,再看一遍算法,再试着重新理解它,然后在程序里重新实现它。


关于算法的书籍,之前也推荐过很多了,其实算法相关的书籍有很多,经典的就那几本,把它们都啃透了,技术自然更上一层楼,诸如:




2、在线课程


网上有很多很好的课程,比如你可以学习Coursera提供的算法课程。你也可以上Udemy的课程。他们提供了许多来自着名导师的算法课程


此外麻省理工学院(MIT)、哈佛大学(Harvard)和斯坦福大学(Stanford University)的课程也可以看看,他们的许多课程都是提供自学的。


3、视频教程


视频教程是理解和实现特定算法的很好的资源。你可以在一些视频网站上(如Youtube)搜索视频教程,几乎每种算法都有大量的教程。你可以先看一段视频来理解这个算法,然后再实现它。



4、解决问题


用算法解决问题是理解和学习算法的最好方法。如果你用算法来解决实际问题,你会对算法有一个深刻的理解,当你用不同的算法解决不同问题时,你就可以很好的掌握它们,你可以在网上找到许多算法问题。首先,浏览一遍问题描述,并尝试找出解决问题所需的算法。尝试使用不同的算法来解决相同的问题。例如,你可以同时使用BFS和DFS遍历一个图。


你还可以去UVA、A2oJ、SPOJ和Timus这样的在线测评网站刷题



5、编程竞赛


深入了解算法的另一个好方法是参加各种在线竞赛。它要求你在有限的时间内理解问题并实现算法,这意味着你必须在短时间内设计出一个算法解决方案,这将极大地帮助您在实际问题中使用算法。


codeforce、Hackerrank和Topcoder它们是最流行的竞赛编程平台,你可以在上面参加各种竞赛。



6、可视化算法


如果你是那种喜欢用可视化学习的人,那么你可以通过可视化来学习算法。有许多在线算法可视化工具可以帮助你从基础上理解算法。


比如你可以通过Algorithm-Visualizer或VisuAlgo这样的可视化工具。



7、博客站点


可以在internet上阅读关于各种算法的博客文章。有很多关于算法的个人博客,多阅读你可能会发现它们也很有用。



8、在线论坛上提问


如果你在实现算法方面遇到了任何问题,你应该在各种在线论坛上具体询问这个问题,通常会有很多大神愿意帮助你解决这个问题。这样的在线论坛诸如topcode -forum、Quora等。



9、制定学习计划


熟能生巧,要掌握算法的艺术,你必须制定一个学习计划,例如,你可以在一天或一周内解决一个或几个算法。简而言之,无论你做什么,你都必须要有计划,尽量有规律。



10、实践!实践!实践!


实践是检验真理的唯一标准,你实践的越多,就越能理解和学到一些东西,没经过实践的方法去学习算法你是学不会了,就算失败了也没关系,坚持再试一次,没准就成功了


❻ 想学习算法,如何入门

入门的话推荐两本书:《算法图解》和《大话数据结构》,

另外推荐一门视频课程《300分钟搞定数据结构与算法》,不想花时间看书的同学,建议看这个视频课程,是关于数据结构和算法很好的一个课程。

阅读全文

与怎么学习算法视频相关的资料

热点内容
怎么在安卓手机登绘旅人 浏览:404
桌面文件全部加密 浏览:401
6s怎么外接u盘需要什么app 浏览:131
linux查看文件权限命令 浏览:685
安卓手游存档怎么用 浏览:761
linuxyum安装ftp 浏览:690
村委会主任可以推行政命令吗 浏览:102
电脑文件夹封面多张图片 浏览:263
网吧总服务器叫什么 浏览:922
多个算法解决同一个问题 浏览:455
小车解压后我的购车发票呢 浏览:977
做app开发用什么云服务器 浏览:177
linux网卡子接口 浏览:985
21岁职高毕业学程序员怎么学 浏览:321
vs如何对单个文件编译 浏览:6
为什么有的电脑不能安装python 浏览:75
金蝶迷你版加密狗检测到过期 浏览:186
硬件描述语言编译结果 浏览:655
程序员逆天改命 浏览:19
金斗云服务器 浏览:447