⑴ 阶乘的公式是什么
n!=1×2×3×...×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。
亦即n!=1×2×3×...×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。
⑵ 阶乘计算公式
阶乘的定义n!=n*(n-1)*(n-2)...3*2*1上述定义式子没有其它的计算公式,就如a^n=aa.a,
a的n次方等于n个a相乘一样,没有其它计算公式不过,在大学数学专业里,有公式对n!进行估计,比如用指数函数对n!进行近似计算
⑶ 数学的阶乘是什么
阶乘的定义n!=n*(n-1)*(n-2)...3*2*1
上述定义式子没有其它的计算公式,就如a^n=aa....a,
a的n次方等于n个a相乘一样,没有其它计算公式
不过,在大学数学专业里,有公式对n!进行估计,比如用指数函数对n!进行近似计算
⑷ 高中数学阶乘(!)是什么意思怎么用,什么时候用到
自然数n!(n的阶乘)是指从1、2……(n-1)、n这n个数的连乘积,即n!=1×2×……×(n-1)×n,在排列组合中常用到。
阶乘(factorial)是基斯顿卡曼(Christian Kramp,1760-1826)于1808年发明的运算符号。阶乘,也是数学里的一种术语。阶乘只有计算方法,有简便公式的,只能硬算。
例如所要求的数是4,则阶乘式是1×2××4,得到的积是24,24就是4的阶乘。
例如所要求的数是6,则阶乘式是1×2×3××6,得到的积是720,720就是6的阶乘。例如所要求的数是n,则阶乘式是1×2×3×......n,设得到的积是x,就是n的阶乘。
(4)数学阶乘的运算法则扩展阅读:
阶乘定义的必要性:
由于正整数的阶乘是一种连乘运算,而0与任何实数相乘的结果都是0。所以用正整数阶乘的定义是无法推广或推导出0!=1的。即在连乘意义下无法解释“0!=1”。
给“0!”下定义只是为了相关公式的表述及运算更方便。
⑸ 阶乘的运算方法
【阶乘的概念】
阶乘(factorial)是基斯顿·卡曼(Christian Kramp, 1760 – 1826)于1808年发明的运算符号。
阶乘,也是数学里的一种术语。
【阶乘的计算方法】
阶乘指从1乘以2乘以3乘以4一直乘到所要求的数。
例如所要求的数是4,则阶乘式是1×2×3×4,得到的积是24,24就是4的阶乘。 例如所要求的数是6,则阶乘式是1×2×3×……×6,得到的积是720,720就是6的阶乘。例如所要求的数是n,则阶乘式是1×2×3×……×n,设得到的积是x,x就是n的阶乘。
【阶乘的表示方法】
在表达阶乘时,就使用“!”来表示。如x的阶乘,就表示为x!
【20以内的数的阶乘】
阶乘一般很难计算,因为积都很大。
以下列出1至20的阶乘:
1!=1,
2!=2,
3!=6,
4!=24,
5!=120,
6!=720,
7!=5040,
8!=40320
9!=362880
10!=3628800
11!=39916800
12!=479001600
13!=6227020800
14!=87178291200
15!=1307674368000
16!=20922789888000
17!=355687428096000
18!=6402373705728000
19!=121645100408832000
20!=2432902008176640000
另外,数学家定义,0!=1,所以0!=1!
⑹ 数学阶乘n!!是什么意思
当n为奇数时,是前n项中的奇数相乘,当n为偶数时,是偶数相乘。例如: 9!!=1*3*5*7*9 8!!=2*4*6*8
⑺ 阶乘如何计算
你好
阶乘(factorial)是基斯顿·卡曼(Christian Kramp, 1760 – 1826)于1808年发明的运算符号。
阶乘,也是数学里的一种术语。
[编辑本段]【阶乘的计算方法】
阶乘指从1乘以2乘以3乘以4一直乘到所要求的数。
例如所要求的数是4,则阶乘式是1×2×3×4,得到的积是24,24就是4的阶乘。 例如所要求的数是6,则阶乘式是1×2×3×……×6,得到的积是720,720就是6的阶乘。例如所要求的数是n,则阶乘式是1×2×3×……×n,设得到的积是x,x就是n的阶乘。
[编辑本段]【阶乘的表示方法】
在表达阶乘时,就使用“!”来表示。如x的阶乘,就表示为x!
如:n!=n×(n-1)×(n-2)×(n-3)×...×1
阶乘的另一种表示方法:(2n-1)!!
当n=2时,3!!=3×1=3
当n=3时,5!!=5×3×1=15
当n=4时,7!!=7×5×3×1=105
...(以此类推)
[编辑本段]【20以内的数的阶乘】
以下列出0至20的阶乘:
0!=1,
1!=1,
2!=2,
3!=6,
4!=24,
5!=120,
6!=720,
7!=5040,
8!=40320
9!=362880
10!=3628800
11!=39916800
12!=479001600
13!=6227020800
14!=87178291200
15!=1307674368000
16!=20922789888000
17!=355687428096000
18!=6402373705728000
19!=121645100408832000
20!=2432902008176640000
另外,数学家定义,0!=1,所以0!=1!
[编辑本段]【阶乘的定义范围】
通常我们所说的阶乘是定义在自然数范围里的,小数没有阶乘,像0.5!,0.65!,0.777!都是错误的。但是,有时候我们会将Gamma函数定义为非整数的阶乘,因为当x是正整数n的时候
⑻ 阶乘的运算法则
很显然(2n)!=n!*(n+1)(n+2)(n+3).2n
而(n!)^2=n!*1*2*3*4.n
所以(n!)^2/(2n)!=1*2*3*4.n/(n+1)(n+2)(n+3).2n
极限为0,所以是收敛的
⑼ 阶乘公式怎么运算的
公式:n!=n*(n-1)!
阶乘的计算方法
阶乘指从1乘以2乘以3乘以4一直乘到所要求的数。
例如所要求的数是4,则阶乘式是1×2×3×4,得到的积是24,24就是4的阶乘。
例如所要求的数是6,则阶乘式是1×2×3×..×6,得到的积是720,720就是6的阶乘。例如所要求的数是n,则阶乘式是1×2×3×…×n,设得到的积是x,x就是n的阶乘。
阶乘的表示方法
在表达阶乘时,就使用“!”来表示。如x的阶乘,就表示为x!
他的原理就是反推,如,举例,求10的阶乘=10*9的阶乘(以后用!表示阶乘)那么9!=?,9!=9*8!,8!=8*7!,7!=7*6!,6!=6*5!,5!=5*4!,4!=4*3!,
3!=3*2!,2!=2*1!,1的阶乘是多少呢?是1
1!=1*1,数学家规定,0!=1,所以0!=1!然后在往前推算,公式为n!(n!为当前数所求的阶乘)=n(当前数)*(n-1)!(比他少一的一个数n-1的阶乘把公式列出来像后推,只有1的!为1,所以要从1开始,要知道3!要知道2!就要知道1!但必须从1!开始推算所以要像后推,如果遍程序算法可以此公式用一个函数解决,并且嵌套调用次函数,,)把数带入公式为,
1!=1*1
2!=2*1(1!)
3!=3*2(2!)
4=4*6(3!),如果要是编程,怎么解决公式问题呢
首先定义算法
//算法,1,定义函数,求阶乘,定义函数fun,参数值n,(#include
long
fun(int
n
)
//long
为长整型,因20!就很大了超过了兆亿
(数学家定义数学家定义,0!=1,所以0!=1!,0与1的阶乘没有实际意义)
2,函数体判断,如果这个数大于1,则执行if(n>1)(往回退算,这个数是10求它!,要从2的阶乘值开始,所以执行公式的次数定义为9,特别需要注意的是此处,当前第一次写入代码执行,已经算一次)
求这个数的n阶乘(公式为,n!=n*(n-1)!,并且反回一个值,
return
(n*(fun(n-1));(这个公式为,首先这个公式求的是10的阶乘,但是求10的阶乘就需要,9的阶乘,9的阶乘我们不知道,所以就把10减1,也就是n-1做为一个新的阶乘,从新调用fun函数,求它的阶乘然后在把这个值返回到
fun(n-1),然后执行n*它返回的值,其实这个公式就是调用fun函数的结果,函数值为return
返回的值,(n-1)为参数依次类推,...一值嵌套调用fun函数,
到把n-1的值=1,
注意:此时已经运行9次fun()函数算第一次运行,,调用几次fun函数呢?8次函数,所以,n-1执行了9次,n-1=1
,n=2已经调用就可以求2乘阶值